Stereometria – przykłady z rozwiązaniami

Zadanie 1. (0-5)
W ostrosłupie prawidłowym trójkątnym krawędź podstawy ma długość a. Ściany boczne są trójkątami ostrokątnymi. Miara kąta między sąsiednimi ścianami bocznymi jest równa 2\alpha. Wyznacz objętość tego ostrosłupa.

♦ matura – poziom rozszerzony, maj 2010.


Wykonajmy szkic sytuacyjny na modelu ostrosłupa ABCD. Należy pamiętać, że kąt pomiędzy przecinającymi się płaszczyznami zaznacza się na przekroju płaszczyzną prostopadłą do wspólnej krawędzi tych płaszczyzn. W naszym przypadku niech K będzie odpowiednim punktem na krawędzi BD tak, aby płaszczyzna AKC była do tej krawędzi prostopadła. Wtedy \angle AKC=2\alpha. Niech też |DP|=H będzie wysokością tego ostrosłupa, gdzie P jest punktem z trójkąta równobocznego ABC.

Rendered by QuickLaTeX.com

Oznaczmy przez x długość odcinka AK, jest to jednocześnie wysokość ściany bocznej ABD. Rozważmy trójkąt AKC podzielony wysokością opuszczoną na bok AC.

Rendered by QuickLaTeX.com

Mamy wtedy

    \[\frac{\frac{a}{2}}{x}=\sin \alpha\quad\Leftrightarrow\quad x=\frac{a}{2\sin\alpha}.\]

Niech b będzie długością krawędzi bocznych naszego ostrosłupa, zaś h niech będzie długością wysokości tych ścian, opuszczonych z wierzchołka D.

Rendered by QuickLaTeX.com

Z twierdzenia Pitagorasa mamy

    \[h^2=b^2-\left(\frac{a}{2}\right)^2,\]

zaś z równości pól liczonych raz dla wysokości x, a raz dla wysokości h, dostajemy \dfrac{1}{2}\cdot |BD|\cdot x=\dfrac{1}{2}\cdot |AB|\cdot h, czyli bx=ah. Podstawiając obliczone wartości x i h, możemy napisać

    \[\frac{ab}{2\sin\alpha}=a\sqrt{b^2-\frac{a^2}{4}}.\]

Dostajemy stąd \dfrac{a^2}{4}=b^2\left(1-\dfrac{1}{4\sin^2\alpha}\right), czyli

    \[b=\frac{a\sin\alpha}{\sqrt{4\sin^2\alpha-1}}.\]

Na koniec zauważmy, że podstawa P wysokości ostrosłupa znajduje się w środku ciężkości trójkąta równobocznego ABC. Stąd H^2=|BD|^2-|BP|^2, czyli

    \[H^2=b^2-\left(\frac{2}{3}\cdot \frac{\sqrt{3}}{2}a\right)^2=\frac{a^2\sin^2\alpha}{4\sin^2\alpha-1}-\frac{a^2}{9}=\frac{5\sin^2\alpha+1}{9\left(4\sin^2\alpha-1\right)}a^2.\]

Mamy więc odpowiedź

    \[V=\frac{1}{3}\cdot\frac{\sqrt{3}}{4}a^2\cdot H=\frac{\sqrt{15\sin^2\alpha+3}}{36\sqrt{4\sin^2\alpha-1}}\,a^3.\]

Warto jeszcze zaznaczyć, jakie warunki powinny spełniać podane wielkości, aby opisana w zadaniu sytuacja miała sens. Musi być oczywiście 4\sin^2\alpha-1>0, a że \alpha\in\left(0,\frac{\pi}{2}\right), to \sin\alpha>\dfrac{1}{2}, czyli \alpha\in\left(\dfrac{\pi}{6},\,\dfrac{\pi}{2}\right).

 

Zadanie 2. (0-8)
W trójkącie ABC dane są: |AC|=8, |BC|=3, \angle ACB=60^\circ. Oblicz objętość i pole powierzchni całkowitej bryły powstałej po obrocie trójkąta ABC dookoła boku BC.

♦ matura – poziom rozszerzony, maj 2003.


Wykonajmy szkic sytuacyjny danych z zadania. Warto przy tym ustawić oś obrotu (czyli bok BC trójkąta) w pozycji pionowej, aby lepiej wyobrazić sobie powstałą po tej operacji bryłę.

Rendered by QuickLaTeX.com

Zauważmy, że w trójkącie ABC kąt przy wierzchołku C jest rozwarty. Można to potwierdzić np. twierdzeniem kosinusów ale zdecydowanie łatwiej zauważyć, że gdyby bok BC byłby nieco dłuższy i miałby długość 4, to wtedy kąt \angle ABC byłby prosty (dany trójkąt byłby połówką trójkąta równobocznego). Przez A' oznaczmy teraz punkt symetryczny do A względem osi obrotu BC. Uzyskana bryła to stożek o przekroju osiowym AA'C z ,,wydrążonym” w podstawie współosiowym stożkiem o przekroju AA'B. Na podstawie tej obserwacji będziemy obliczać objętość V tej bryły.

Długość odcinka AA' to podwojona wysokość trójkąta równobocznego o boku długości 8, czyli |AA'|=2\cdot\dfrac{8\sqrt{3}}{2}=8\sqrt{3}. Stąd

    \[V=\pi \cdot\left(\frac{|AA'|}{2}\right)^2\cdot 4-\pi \cdot\left(\frac{|AA'|}{2}\right)^2\cdot 1=\pi \cdot\left(4\sqrt{3}\right)^2\cdot 3=144\pi.\]

Z kolei powierzchnia całkowita S to jakby suma powierzchni bocznych wskazanych wyżej dwóch stożków. Tworząca l_1 pierwszego wynosi l_1=|AC|=8, zaś tworząca stożka drugiego ma długość l_2=|AB|, którą obliczymy z twierdzenia cosinusów:

    \[|AB|^2=8^2+3^2-2\cdot 8\cdot 3\cdot\cos 60^\circ=64+9-24=49,\]

stąd |AB|=7.

Mamy więc

    \[S=\pi\frac{|AA'|}{2}\cdot l_1+\pi\frac{|AA'|}{2}\cdot l_2=\pi\cdot 4\sqrt{3}\cdot (8+7)=60\pi\sqrt{3}.\]

 

Zadanie 3. (0-4)
Wybierz dwie dowolne przekątne sześcianu i oblicz cosinus kąta między nimi. Sporządź odpowiedni rysunek i zaznacz na nim kąt, którego cosinus obliczasz.

♦ matura próbna – poziom rozszerzony, styczeń 2003.


Zgodnie z poleceniem, wykonajmy rysunek. Rozważamy sześcian ABCDA_1B_1C_1D_1, niech K będzie punktem wspólnym przekątnych A_1C i BD_1.

Rendered by QuickLaTeX.com

Oznaczmy przez a długość krawędzi sześcianu. Wtedy oczywiście każda z jego przekątnych będzie miała długość a\sqrt{3}. Nasz kąt możemy zaznaczyć na dodatkowym płaskim rysunku. Jest to kąt pomiędzy przekątnymi prostokąta A_1BCD_1, którego boki wynoszą |A_1B|=a\sqrt{2} oraz |BC|=a.

Rendered by QuickLaTeX.com

Niech \alpha będzie kątem ostrym pomiędzy wybranymi przekątnymi. Najłatwiej użyć jest twierdzenia cosinusów. Mamy

    \[|BC|^2=|BK|^2+|CK|^2-2\cdot|BK|\cdot|CK|\cos\alpha,\]

podstawiając znane długości poszczególnych odcinków, dostaniemy \cos\alpha=\dfrac{a^2-\frac{3}{4}a^2-\frac{3}{4}a^2}{-2\cdot\frac{\sqrt{3}}{2}a\cdot\frac{\sqrt{3}}{2}a}=\dfrac{\frac{1}{2}a^2}{\frac{3}{2}a^2}=\dfrac{1}{3}. To kończy rozwiązanie.

 

Zadanie 4. (0-4)
Graniastosłup prawidłowy czworokątny o krawędzi podstawy a i dwa razy krótszej wysokości przecięto płaszczyzną przechodzącą przez przekątną podstawy i nachyloną do płaszczyzny podstawy pod kątem 60^\circ. Zaznacz ten kąt na rysunku oraz oblicz pole otrzymanego przekroju, wynik przedstaw w najprostszej postaci.

♦ matura próbna ,,Operon” – poziom rozszerzony, listopad 2019.


Sytuację przedstawia rysunek. Trzeba oczywiście sprawdzić, czy przy podanych wymiarach graniastosłupa opisany przekrój przecina obie podstawy bryły, czy też przecina jedną z krawędzi bocznych. Jeślj przyjmiemy oznaczenia wierzchołków graniastosłupa jak na rysunku poniżej i założymy, że interesujący nas przekrój zawiera przekątną BD podstawy, to gdyby przekrój ten przechodził przez wierzchołek C_1, to kąt nachylenia przekroju do płaszczyzny podstawy wynosiłby \alpha i wówczas \text{tg}\alpha=\dfrac{|CC_1|}{|TC_1|}, gdzie T jest środkiem kwadratowej podstawy ABCD. Stąd \text{tg}\alpha=\dfrac{a/2}{a\sqrt{2}/2}=\dfrac{\sqrt{2}}{2}<\sqrt{3}=\text{tg} 60^\circ. Wynika stąd, że rozważany w zadaniu przekrój jest trapezem, którego podstawy zawierają się w podstawach graniastosłupa.

Rendered by QuickLaTeX.com

Niech W będzie punktem przecięcia prostej TV z przedłużeniem krawędzi bocznej CC_1, przy czym V jest środkiem podstawy PQ trapezu będącego rozważanym przekrojem. Trójkąt prostokątny CTW jest połówką trójkąta równobocznego i dodatkowo |CT|=\dfrac{a\sqrt{2}}{2}, zatem |CW|=\dfrac{a\sqrt{6}}{2} i |TW|=2|CT|=a\sqrt{2}. Trójkątem ,,ekierkowym” jest także trójkąt C_1VW oraz |C_1W|=\dfrac{a(\sqrt{6}-1)}{2}, a stąd |WV|=\dfrac{a(\sqrt{6}-1)}{\sqrt{3}} i tym samym

    \[|TV|=|TW|-|WV|=\frac{a\sqrt{3}}{3}.\]

Mamy też |PQ|=|WV|, więc możemy już obliczyć pole S naszego przekroju. Mamy

    \[S=\frac{|BD|+|PQ|}{2}\cdot|TV|=\frac{a\sqrt{2}+\frac{a(\sqrt{6}-1)}{\sqrt{3}}}{2}\cdot \frac{a\sqrt{3}}{3}=\frac{a^2(2\sqrt{6}-1)}{6}.\]

 

Zadanie 5. (0-7)
Powierzchnia całkowita graniastosłupa prawidłowego sześciokątnego jest równa S\sqrt{3}. Wyznacz największą z możliwych objętość tego graniastosłupa, wynik zapisz w najprostszej postaci.

♦ matura próbna ,,Operon” – poziom rozszerzony, listopad 2019.


Niech a,h>0 będą odpowiednio długością podstawy i wysokością danego graniastosłupa. Sześciokąt foremny o boku długości a składa się z sześciu trójkątów równobocznych o boku a, stąd

    \[S\sqrt{3}=12\cdot\frac{\sqrt{3}}{4}a^2+6ah=3\sqrt{3}a^2+6ah.\]

Rendered by QuickLaTeX.com

Obliczając z tego równania długość h otrzymamy

    \[h=\dfrac{\sqrt{3}}{6}\left(\dfrac{S}{a}-3a\right).\]

Wynika stąd w szczególności, że S/a-3a>0, czyli 3a^2<S i stąd a\in\left(0,\,\dfrac{\sqrt{3S}}{3}\right). Objętość V graniastosłupa, jako funkcja zmiennej a wyraża się wzorem

    \[V(a)=6\cdot\frac{\sqrt{3}}{4}a^2\cdot h=\frac{3}{4}\left(Sa-3a^3\right).\]

Mamy znaleźć maksimum funkcji V(a) dla podanego wyżej zakresu zmiennej a. Pochodna wynosi

    \[V'(a)=\frac{3}{4}\left(S-9a^2\right).\]

Wynika stąd, że dla a=\dfrac{\sqrt{S}}{3} pochodna ta zmienia znak z dodatniego na ujemny, więc w punkcie tym funkcja V(a) osiąga maksimum.

Obliczamy

    \[V_{\max}=V\left(\frac{\sqrt{S}}{3}\right)=\frac{S\sqrt{S}}{6}.\]

 

Ciągi – przykłady z rozwiązaniami

Zadanie 1. (0-5)
O liczbach a, b, c wiemy, że ciąg (a, b, c) jest arytmetyczny i a + c = 10, zaś ciąg (a+1, b+4, c+19) jest geometryczny. Wyznacz te liczby.

♦ matura – poziom rozszerzony, maj 2010.


Z warunku na ciąg arytmetyczny wiemy, że 2b=a+c, a ponieważ ta ostatnia suma wynosi 10, to 2b=10 i b=5. Przechodząc do warunku na ciąg geometryczny otrzymujemy

    \[(b+4)^2=(a+1)(c+19)\quad\Longrightarrow\quad (a+1)(c+19)=9^2=81.\]

Podstawmy c=10-a do tego równania. Wtedy

    \[(a+1)(10-a+19)=81\quad\Longleftrightarrow\quad -a^2+28a+29=81,\]

co po uporządkowaniu daje równość a^2-28a+52=0. Obliczamy wyróżnik \Delta=(-28)^2-4\cdot 1\cdot 52=576 i \Delta=24. Stąd a_1=\dfrac{28-24}{2}=2 oraz a_2=\dfrac{28+24}{2}=26. Wyniki te prowadzą odpowiednio do c_1=10-a_1=8 lub c_2=10-a_2=-16.

Ostatecznie uzyskujemy dwa możliwe rozwiązania: (a,b,c)=(2,5,8) albo (a,b,c)=(26,5,-16).

 

Zadanie 2. (0-3)
Suma n początkowych, kolejnych wyrazów ciągu (a_n), jest obliczana według wzoru S_n=n^2+3n, n\in\mathbf{N}. Wyznacz a_n. Wykaż, że ciąg (a_n) jest ciągiem arytmetycznym.

♦ matura próbna – poziom rozszerzony, styczeń 2003.


Formalnie suma n początkowych wyrazów dowolnego ciągu (a_n) to wartość 

    \[S_n=\underbrace{a_1+a_2+a_3+\ldots+a_{n-1}}_{=S_{n-1}}+a_n=S_{n-1}+a_n\]

dla n\geqslant 2 oraz S_1=a_1. Zatem mamy zależność a_n=S_n-S_{n-1} przy n\geqslant 2.

Po podstawieniu danych z zadania, otrzymujemy

    \[a_n=S_n-S_{n-1}=n^2+3n-\left((n-1)^2+3(n-1)\right)=2n+2,\]

dla n\geqslant 2 oraz a_1=S_1=1^2+3\cdot 1=4. Widać więc, że wzór ogólny a_n=2n+2 działa dla wszystkich n\in\mathbf{N}.

Aby pokazać, że ciąg (a_n) jest arytmetyczny, wystarczy sprawdzić, że różnica jego sąsiednich wyrazów jest stała. Mamy

    \[a_{n+1}-a_n=2(n+1)+2-(2n+2)=2.\]

To kończy dowód i rozwiązanie zadania.

 

Zadanie 3. (0-4)
Dziesiąty wyraz pewnego ciągu geometrycznego równa się 10. Oblicz iloczyn dziewiętnastu początkowych, kolejnych wyrazów tego ciągu.

♦ matura próbna – poziom rozszerzony, styczeń 2003.


Oznaczmy przez (b_n) dowolny ciąg geometryczny; załóżmy, że b_{10}=10 i niech q będzie ilorazem tego ciągu. Wtedy

    \[b_n=b_1\cdot q^{n-1}\]

dla n=1,2,3,\ldots. W szczególności mamy b_1\cdot q^9=10.

Zobaczmy jak inaczej można zapisać iloczyn dziewiętnastu kolejnych początkowych wyrazów naszego ciągu. Mamy

(1)   \begin{eqnarray*} b_1 b_2 b_3\ldots b_{19} &=& b_1\cdot (b_1 q)\cdot (b_1 q^2)\cdot (b_1 q^3)\cdot\ldots\cdot(b_1 q^{18})=\nonumber\\ &=& b_1^{19}\cdot q^{1+2+3+\ldots+18}.\nonumber \end{eqnarray*}

Sumę 1+2+3+\ldots+18 obliczamy albo bezpośrednio albo korzystając ze wzoru na sumę wyrazów w ciągu arytmetycznym. Otrzymujemy 1+2+3+\ldots+18=\dfrac{1+18}{2}\cdot 18=19\cdot 9. Ostatecznie więc mamy

    \[b_1 b_2 b_3\ldots b_{19} = b_1^{19}\cdot q^{9\cdot 19}=\left(b_1 q^{9}\right)^{19}=b_{10}^{19}=10^{19}.\]

 

Zadanie 4. (0-5)
Rozwiąż nierówność

    \[\frac{1}{x-3}+\frac{1}{(x-3)^2}+\frac{1}{(x-3)^3}+\ldots\geqslant 2-x,\]

gdzie lewa strona nierówności jest szeregiem geometrycznym zbieżnym. Podaj odpowiednie założenia.

♦ matura próbna ,,Operon” – poziom rozszerzony, listopad 2019.


Oczywiście musi być x\neq 3. Aby występujący w zadaniu szereg geometryczny był zbieżny, jego iloraz q=\dfrac{1}{x-3} musi spełniać nierówność |q|<1. Stąd

    \[\left|\frac{1}{x-3}\right|<1\quad \Leftrightarrow\quad |x-3|>1.\]

To oznacza, że x-3<-1 lub x-3>1, czyli mamy założenia: x\in(-\infty,2)\cup(4,\infty).

Suma zbieżnego szeregu geometrycznego o pierwszym wyrazie a_1 i ilorazie q jest równa \dfrac{a_1}{1-q}, czyli dana nierówność przyjmuje postać

    \[\frac{\frac{1}{x-3}}{1-\frac{1}{x-3}}	\geqslant 2-x\quad\Leftrightarrow\quad \frac{1}{x-3-1}\geqslant 2-x.\]

To prowadzi do nierówności \dfrac{1-(2-x)(x-4)}{(x-4)}\geqslant 0, a stąd \dfrac{x^2-6x+9}{x-4}\geqslant 0 i tym samym (x-3)^2(x-4)\geqslant 0 (przy podanych wcześniej założeniach).

Rendered by QuickLaTeX.com

Zbiór wyznaczony przez ostatnią nierówność pokazuje rysunek powyżej, co w połączeniu z założeniami daje końcową odpowiedź: x\in(4,\,\infty).

 

Zadanie 5. (0-3)
Ciąg (a_n) jest określony wzorem

    \[a_n=\frac{1}{\dfrac{1}{\log_2(n+1)}+\dfrac{1}{\log_3(n+1)}+\ldots+\dfrac{1}{\log_{2018}(n+1)}}\]

dla n\geqslant 1. Uzasadnij, że wzór ciągu (a_n) można zapisać w postaci a_n=\log_{2018!}(n+1) i oblicz wartość wyrażenia a_1+a_2+\ldots+a_{2017}.

♦ matura próbna ,,Nowa Era” – poziom rozszerzony, styczeń 2018.


Każdy z ułamków postaci \dfrac{1}{\log_k(n+1)} można odwrócić pisząc \log_{(n+1)} k dla k=2,3,\ldots,2018. Wówczas mianownik wyrażenia definiującego wyraz a_n jest sumą równą

    \[\log_{(n+1)}2+\log_{(n+1)}3+\ldots+\log_{(n+1)}2018=\log_{(n+1)}2018!\]

Tym samym

    \[a_n=\dfrac{1}{\log_{(n+1)}2018!}=\log_{2018!}(n+1),\]

co kończy rozwiązanie pierwszej części zadania.

Zauważmy teraz, że suma S=a_1+a_2+\ldots+a_{2017} wynosi

    \[S=\log_{2018!}2+\log_{2018!}3+\ldots+\log_{2018!} 2018=\log_{2018!}2018!=1.\]