Matura rozszerzona z matematyki (maj 2019) – rozwiązania

Poniżej prezentujemy rozwiązania wszystkich zadań maturalnych z matematyki dla poziomu rozszerzonego, z którymi abiturienci mierzyli się 9. maja 2019 r. Zadania pochodzą z arkusza opublikowanego w serwisie Centralnej Komisji Egzaminacyjnej.

Zadanie 1. (0-1)
Dla dowolnych liczb x>0, x\neq 1, y>0, y\neq 1 wartość wyrażenia \left(\log_{\frac{1}{x}}y\right)\cdot \left(\log_{\frac{1}{y}}x\right) jest równa
   A. x\cdot y
   B. \frac{1}{x\cdot y}
   C. -1
   D. 1


Z własności logarytmów, przy podanych założeniach mamy

(1)   \begin{eqnarray*} \left(\log_{\frac{1}{x}}y\right)\cdot \left(\log_{\frac{1}{y}}x\right)&=&\frac{1}{\log_y\frac{1}{x}}\cdot\frac{1}{\log_x\frac{1}{y}}=\nonumber\\[0.25cm] &=&\left(-\frac{1}{\log_yx}\right)\cdot\left(-\frac{1}{\log_xy}\right)=\nonumber\\[0.25cm] &=&\frac{1}{\log_yx}\cdot\log_yx=1.\nonumber \end{eqnarray*}

Zatem poprawną jest odpowiedź D.



Zadanie 2. (0-1)
Liczba \cos^2105^\circ-\sin^2105^\circ jest równa jest równa
   A. -\frac{\sqrt{3}}{2}
   B. -\frac{1}{2}
   C. \frac{1}{2}
   D. \frac{\sqrt{3}}{2}


Ze wzoru na cosinus podwojonego argumentu mamy

(2)   \begin{eqnarray*} \cos^2105^\circ-\sin^2105^\circ&=&\cos(2\cdot 105^\circ)=\cos 210^\circ=\nonumber\\ &=&\cos(30^\circ+180^\circ)=-\cos30^\circ=-\frac{\sqrt{3}}{2}.\nonumber \end{eqnarray*}

Poprawną odpowiedzią jest A.



Zadanie 3. (0-1)
Na rysunku przedstawiono fragment wykresu funkcji y=f(x), który jest złożony z dwóch półprostych AD i CE oraz dwóch odcinków AB i BC, gdzie A=(-1,0), B=(1,2), C=(3,0), D=(-4,3), E=(6,3).

Rendered by QuickLaTeX.com

Wzór funkcji f to:
   A. f(x)=|x+1|+|x-1|
   B. f(x)=||x-1|-2|
   C. f(x)=||x-1|+2|
   D. f(x)=|x-1|+2


Z opisu wykresu funkcji f(x) wynika w szczególności, że f(0)=1. Podstawiając argument x=0 do podanych czterech propozycji odpowiedzi, widzimy, że kolejne wartości są równe: f_A(0)=2, f_B(0)=1, f_C(0)=3 oraz f_D(0)=3. Zatem poprawną odpowiedzią jest B.



Zadanie 4. (0-1)
Zdarzenia losowe A i B zawarte w \Omega są takie, że prawdopodobieństwo P(B') zdarzenia B', przeciwnego do zdarzenia B, jest równe \frac{1}{4}. Ponadto prawdopodobieństwo warunkowe P(A|B)=\frac{1}{5}. Wynika stąd, że
   A. P(A\cap B)=\frac{1}{20}
   B. P(A\cap B)=\frac{4}{15}
   C. P(A\cap B)=\frac{3}{20}
   D. P(A\cap B)=\frac{4}{5}


Mamy P(A|B)=\frac{P(A\cap B)}{P(B)}, czyli

    \[P(A\cap B)=P(A|B)\cdot P(B)=P(A|B)\cdot (1-P(B'))=\frac{1}{5}\cdot\frac{3}{4}=\frac{3}{20}.\]

Odpowiedź C.



Zadanie 5. (0-2)
Obliczyć granicę

    \[\lim\limits_{n\to\infty}\left(\frac{9n^3+11n^2}{7n^3+5n^2+3n+1}-\frac{n^2}{3n^2+1}\right).\]

Wpisz w poniższe kratki – od lewej do prawej – trzy kolejne cyfry po przecinku rozwinięcia dziesiętnego otrzymanego wyniku.

Rendered by QuickLaTeX.com


Wyłączając przed nawias, z liczników i mianowników obu ułamków, dominujący czynnik (czyli odpowiednio n^3 i n^2, otrzymamy

(3)   \begin{eqnarray*} &{}&\lim\limits_{n\to\infty}\left(\frac{9n^3+11n^2}{7n^3+5n^2+3n+1}-\frac{n^2}{3n^2+1}\right)=\nonumber\\ &=&\lim\limits_{n\to\infty}\left(\frac{n^3\big(9+\frac{11}{n}\big)}{n^3\big(7+\frac{5}{n}+\frac{3}{n^2}+\frac{1}{n^3}\big)}-\frac{n^2}{n^2\big(3+\frac{1}{n^2}\big)}\right)=\nonumber\\ &=&\frac{9}{7}-\frac{1}{3}=\frac{27}{21}-\frac{7}{21}=\frac{20}{21}\approx 0,\!95238095\ldots\nonumber \end{eqnarray*}

To oznacza, że w kratki należało wpisać cyfry 9, 5 i 2.



Zadanie 6. (0-3)
Rozważamy wszystkie liczby naturalne pięciocyfrowe zapisane przy użyciu cyfr 1, 3, 5, 7, 9, bez powtarzania jakiejkolwiek cyfry. Oblicz sumę wszystkich takich liczb.


Wszystkich permutacji pięciu podanych cyfry jest 5!=120. Każda z nich odpowiada jednemu składnikowi sumy, którą mamy obliczyć. W dokładnie 4!=\frac{5!}{5}=24 różnych składnikach cyfra 1 będzie stanowiła cyfrę jedności; w tylu samo składnikach cyfrą jedności będzie 3 itd. dla każdej z ustalonych pięciu cyfr. Podobnie sytuacja wygląda dla kolejnych rzędów (tzn. dla cyfr dziesiątek, setek, itd.) Ponieważ wkład tych cyfr do szukanej sumy S wynosi

    \[24\cdot(1+3+5+7+9)=24\cdot 25=600\]

dla każdego dostępnego rzędu wielkości, więc

    \[S=600\cdot (1+10+100+1000+10000)=600\cdot 11111=6666600.\]



Zadanie 7. (0-2)
Punkt P=(10,2429) leży na paraboli o równaniu y=2x^2+x+2219 Prosta o równaniu kierunkowym y=ax+b jest styczna do tej paraboli w punkcie P. Oblicz współczynnik b.


Niech f(x)=2x^2+x+2219 będzie daną funkcją kwadratową. Współczynnik a prostej stycznej jest wartością pochodnej funkcji f(x) dla argumentu x=10 (zgodnego ze współrzędną odciętą punktu P). Mamy f'(x)=4x+1, stąd a=f'(10)=4\cdot 10+1=41. Styczna przechodzi przez punkt P, więc 2429=41\cdot 10+b, a stąd b=2429-410=2019.



Zadanie 8. (0-3)
Udowodnij, że dla dowolnych dodatnich liczb rzeczywistych x i y, takich że x<y, i dowolnej dodatniej liczby rzeczywistej a, prawdziwa jest nierówność \dfrac{x+a}{y+a}+\dfrac{y}{x}>2.


Zauważmy, że dla y>x i a>0 prawdziwa jest nierówność

    \[(x-y)^2+a(y-x)>0.\]

Wynika z niej, że x(x+a)+y(y+a)>2xy+2ax. Dzieląc ostatnią nierówność obustronnie przez liczbę dodatnią x(y+a) otrzymamy

    \[\frac{x+a}{y+a}+\frac{y}{x}>2,\]

to kończy dowód.



Zadanie 9. (0-3)
Dany jest trójkąt równoramienny ABC, w którym |AC|=|BC|. Na ramieniu AC tego trójkąta wybrano punkt M (M\neq A i M\neq C), a na ramieniu BC wybrano punkt N, w taki sposób, że |AM|=|CN|. Przez punkty M i N poprowadzono proste prostopadłe do podstawy AB tego trójkąta, które wyznaczają na niej punkty S i T. Udowodnij, że |ST|=\frac{1}{2}|AB|.


Rendered by QuickLaTeX.com

Sytuacja wygląda jak na rysunku. Poprowadźmy odcinek CP, będący wysokością trójkąta ABC wychodzącą z wierzchołka C oraz odcinek NK, gdzie K jest rzutem prostokątnym punktu N na wysokość CP. Wówczas odcinki NK i AB są równoległe (bo są prostopadłe do wspólnej wysokości CP). Ponieważ trójkąt ABC jest równoramienny, to z równoległości tej mamy równości kątów: \angle BAC=\angle CNK oraz \angle AMS=\angle KCN (wysokość poprowadzona na podstawę w trójkącie równoramiennym jest jednocześnie dwusieczną kąta). Z treści zadania mamy jeszcze |AM|=|CN|, zatem trójkąty \triangle\, AMS i \triangle\, NCK są przystające (cecha kąt-bok-kąt). W szczególności mamy |AS|=|KN|=|PT|. To już oznacza, że

    \[\frac{1}{2}|AB|=|AP|=|AS|+|SP|=|PT|+|SP|=|ST|,\]

a to kończy dowód. 



Zadanie 10. (0-4)
Punkt D leży na boku AB trójkąta ABC oraz |AC|=16, |AD|=6, |CD|=14, |BC|=|BD|. Oblicz obwód trójkąta ABC.


Rendered by QuickLaTeX.com

Niech x=|BC|=|BD|. Wykorzystamy dwukrotnie twierdzenie kosinusów. Najpierw dla trójkąta ADC, aby wyznaczyć kosinus kąta \beta=\angle ADC. Mamy 16^2=6^2+14^2-2\cdot 6\cdot 14\cos\beta, czyli

    \[\cos\beta=\frac{36+196-256}{12\cdot 14}=-\frac{1}{7}.\]

Zatem \cos\angle CDB=\cos(180^\circ-\beta)=-\cos\beta=\frac{1}{7}. Stąd – stosując drugi raz twierdzenie kosinusów – w trójkącie równoramiennym BCD mamy

    \[x^2=14^2+x^2-2\cdot 14x\cos\angle CDB,\]

czyli 2\cdot 14x\cdot\frac{1}{7}=196, a zatem x=49. To oznacza, że szukany obwód trójkąta ABC wynosi |AB|+|BC|+|CA|=(6+49)+49+16=120.



Zadanie 11. (0-6)
Dane są okręgi o równaniach x^2+y^2-12x-8y+43=0 i x^2+y^2-2ax+4y+a^2-77=0. Wyznacz wszystkie wartości parametru a, dla których te okręgi mają dokładnie jeden punkt wspólny. Rozważ wszystkie przypadki.


Dane równania można przekształcić do postaci (x-6)^2+(y-4)^2=3^2 oraz (x-a)^2+(y+2)^2=9^2. To oznacza, że pierwszy okrąg — oznaczmy go przez \omega_1, ma środek w punkcie O_1=(6,4) i promieniu r_1=3. Drugi okrąg zaś – nazwijmy go \omega_2 – ma środek w punkcie O_2=(a,-2) i promień r_2=9.

Rendered by QuickLaTeX.com

Dane okręgi mogą być styczne zewnętrznie lub wewnętrznie. Ponieważ środki okręgu \omega_2 leżą na prostej y=-2, to styczność wewnętrzna może się zdarzyć jedynie dla a=4 – wówczas bowiem środki obu okręgów będą możliwie najbliżej siebie i |O_1O_2|=6=r_2-r_1.

Obliczymy teraz te wartości a, dla których okręgi są styczne zewnętrznie. Musi być wtedy spełniony warunek |O_1O_2|=r_1+r_2, czyli

    \[\sqrt{(6-a)^2+(4-(-2))^2}=12\qquad\Longleftrightarrow\qquad (6-a)^2=108.\]

Stąd a=6\sqrt{3}+6 lub a=-6\sqrt{3}+6. Ostatecznie mamy więc trzy możliwe rozwiązania: a=6, a=6-6\sqrt{3} i a=6+6\sqrt{3}.



Zadanie 12. (0-6)
Trzywyrazowy ciąg (a,b,c) o wyrazach dodatnich jest arytmetyczny, natomiast ciąg \left(\dfrac{1}{a},\dfrac{2}{3b},\,\dfrac{1}{2a+2b+c}\right) jest geometryczny. Oblicz iloraz ciągu geometrycznego.


Z warunku na ciąg arytmetyczny mamy 2b=a+c, natomiast z warunku na ciąg geometryczny jest \left(\dfrac{2}{3b}\right)^2=\dfrac{1}{a}\cdot\dfrac{1}{2a+2b+c}. Wyznaczając b z pierwszej zależności i wstawiając do drugiej, otrzymujemy

    \[\left(\frac{2}{3\cdot\frac{a+c}{2}}\right)^2=\frac{1}{a}\cdot\frac{1}{2a+a+c+c}.\]

Porządkując wyrazy, mamy \frac{16}{9(a+c)^2}=\frac{1}{a(3a+2c)}, czyli 9(a+c)^2=16a(3a+2c). Podstawiając zmienną pomocniczą t=\frac{a}{c}, po obustronnym podzieleniu ostatniego równania przez c^2, dostaniemy

    \[9(t+1)^2=16t(3t+2)\quad\Leftrightarrow\quad $39t^2+14t-9=0.\]

Obliczamy wyróżnik \Delta=14^2+4\cdot 39\cdot 9=1600, więc t_1=\frac{-14-40}{78}<0 oraz t_2=\frac{-14+40}{78}=\frac{1}{3}. Pierwsze rozwiązanie odrzucamy, bo t=\frac{a}{c}>0 dla a,c>0.

Obliczamy iloraz ciągu geometrycznego. Wynosi on

    \[q=\frac{2}{3b}:\frac{1}{a}=\frac{2a}{3b}=\frac{4a}{3(a+c)}=\frac{4t}{3(t+1)}=\frac{4/3}{1+3}=\frac{1}{3}.\]



Zadanie 13. (0-6)
Wielomian określony wzorem W(x)=2x^3+(m^3+2)x^2-11x-2(2m+1) jest podzielny przez dwumian (x-2) oraz przy dzieleniu przez dwumian (x+1) daje resztę 6. Oblicz m i dla wyznaczonej wartości m rozwiąż nierówność W(x)\leqslant 0.


Na podstawie twierdzenia Bézouta mamy W(2)=0 oraz W(-1)=6. Stąd 2\cdot 2^3+(m^3+2)\cdot 2^2-11\cdot 2-2(2m+1)=0, czyli 4m^3-4m=0. To prowadzi do 4m(m-1)(m+1)=0, więc m\in\{-1,\,0,\,1\}. Wystarcz teraz zobaczyć, która z tych trzech możliwości spełnia drugi warunek: W(-1)=6. Ponieważ W(-1)=m^3-4m+9, to widzimy, że musi być m=1.

Interesuje nas więc wielomian W(x)=2x^3+3x^2-11x-6. Wykorzystując ponownie informację o pierwiastku W(2)=0, po wykonaniu dzielenia W(x):(x-2) otrzymujemy zależność

    \[W(x)=(x-2)(2x^2+7x+3).\]

Możemy obliczyć pierwiastki drugiego czynnika: \Delta=49-24=25, czyli x_1=\frac{-7-5}{4}=-3 oraz x_2=\frac{-7+5}{4}=-\frac{1}{2}. Zatem

    \[W(x)=(x-2)(x+3)(2x+1).\]

Rendered by QuickLaTeX.com

Z pomocniczego wykresu odczytujemy rozwiązanie nierówności W(x)\leqslant 0. Tworzy je suma przedziałów (-\infty,\,-3]\cup \left[-\frac{1}{2},2\right].



Zadanie 14. (0-4)
Rozwiąż równanie (\cos x)\left[\sin\left(x-\dfrac{\pi}{3}\right)+\sin\left(x+\dfrac{\pi}{3}\right)\right]=\dfrac{1}{2}\sin x.


Wykorzystamy wzór na sinus sumy argumentów: \sin(x+y)=\sin x\cos y+\cos x\sin y. Stąd mamy

(4)   \begin{eqnarray*} &{}&\sin\left(x-\dfrac{\pi}{3}\right)+\sin\left(x+\dfrac{\pi}{3}\right)=\nonumber\\[0.25cm] &=&\sin x\cos\frac{\pi}{3}-\cos x\sin\frac{\pi}{3}+\sin x\cos\frac{\pi}{3}+\cos x\sin\frac{\pi}{3}=\sin x. \end{eqnarray*}

Równanie przyjmuje więc postać 2\cos x\sin x=\sin x, czyli \sin x(2\cos x-1)=0. To prowadzi do alternatywy: \sin x=0 lub \cos x=\frac{1}{2}. Stąd odpowiedź

    \[x=k\pi\quad\text{lub}\quad x=\frac{\pi}{3}+2k\pi\quad\text{lub}\quad x=-\frac{\pi}{3}+2k\pi,\]

gdzie k jest liczbą całkowitą.



Zadanie 15. (0-7)
Rozważmy wszystkie graniastosłupy prawidłowe trójkątne o objętości V=2. Wyznacz długości krawędzi tego z rozważanych graniastosłupów, którego pole powierzchni całkowitej jest najmniejsze. Oblicz to najmniejsze pole.


Niech x>0 będzie długością krawędzi podstawy, zaś h>0 wysokością (i jednocześnie długością krawędzi bocznej) w rozważanych graniastosłupach. Mamy V=\frac{\sqrt{3}}{4}x^2h=2, a stąd h=\frac{8}{\sqrt{3}}\cdot\frac{1}{x^2}.

Niech S=f(x) będzie polem powierzchni całkowitej naszego graniastosłupa. Wówczas na S składają się pola dwóch podstaw (trójkątów równobocznych o krawędzi x) oraz pola trzech ścian bocznych (prostokątów x\times h). Stąd, wykorzystując zależność na V, mamy

    \[f(x)=S=2\cdot\frac{\sqrt{3}}{4}x^2+3xh=\frac{\sqrt{3}}{2}x^2+\frac{8\sqrt{3}}{x}.\]

Naszym celem jest wyznaczenie minimum funkcji f(x) dla x>0. Można wykorzystać rachunek różniczkowy, lub posłużyć się nierównością pomiędzy średnią geometryczną i średnią arytmetyczną dla trzech liczb dodatnich: \sqrt[3]{abc}\leqslant\dfrac{a+b+c}{3} dla dowolnych a,b,c>0; równość zachodzi jedynie dla a=b=c.

Przyjmijmy w powyższej nierówności a=b=\frac{8}{x} oraz c=x^2. Wtedy 4=\sqrt[3]{\frac{8}{x}\cdot\frac{8}{x}\cdot x^2}\leqslant \frac{\frac{8}{x}+\frac{8}{x}+x^2}{3}, czyli

    \[x^2+\frac{16}{x}\geqslant 12\]

i równość zachodzi wyłącznie dla x^2=\frac{8}{x}, a więc dla x^3=8, skąd x=2.

Zauważmy, że nierówność powyższa pozwala nam napisać

(5)   \begin{eqnarray*} f(x)&=&\frac{\sqrt{3}}{2}x^2+\frac{8\sqrt{3}}{x}=\frac{\sqrt{3}}{2}\left(x^2+\frac{16}{x}\right)\geqslant\nonumber\\[0.25cm] &\geqslant&\frac{\sqrt{3}}{2}\cdot 12=6\sqrt{3}.\nonumber \end{eqnarray*}

Oznacza to, że szukany graniastosłup ma krawędzie długości x=2, h=\frac{8}{\sqrt{3}}\cdot\frac{1}{2^2}=\frac{2\sqrt{3}}{3}, a jego objętość wynosi 6\sqrt{3}.



Magiczne uzupełnianki

Co jakiś czas w różnych konkursach matematycznych (np. w Grach Matematycznych i Logicznych) pojawiają się zadania polegające na uzupełnieniu liczbami danego diagramu w taki sposób, aby spełnione były jakieś dodatkowe warunki. Oczywiście problemy tego typu można rozwiązywać metodą prób i błędów losowo podstawiając wartości i sprawdzając, czy przypadkiem nie otrzymaliśmy rozwiązania. Najczęściej jednak zdecydowanie szybsze podejście to poczynienie jakiegoś dodatkowego spostrzeżenia, które pozwala ustalić (lub więcej) niewiadomą. Taki bardziej systematyczny sposób ma też tę zaletę, że bardzo często jesteśmy w stanie wyznaczyć wszystkie możliwe rozwiązania.

Poniżej znajduje się pięć przykładowych zadań tego typu wraz ze szczegółowym rozwiązaniem. Trudność kolejnych przykładów jest coraz większa, choć to dość subiektywna sprawa. Warto oczywiście przed zerknięciem na rozwiązanie spróbować zmierzyć się z daną łamigłówką samodzielnie. Z drugiej strony, nie należy zadań tego typu lekceważyć – pomimo bardzo prostej treści, czasami trzeba się sporo natrudzić aby dotrzeć do szukanej odpowiedzi. Na koniec proponuję jeszcze trzy magiczne zadania, tym razem już do samodzielnego rozwiązania.

1. Róża.
Wiadomo, że przedstawiona figura jest miagiczna: w każde pole da się wpisać liczbę od 1 do 7 (i każda z tych wartości wystąpi dokładnie raz) tak, aby wszystkie sumy trzech liczb znajdujących się na wspólnej linii prostej przechodzącej przez pole centralne, były takie same. Jaka liczba może znaleźć się w polu środkowym?

Rendered by QuickLaTeX.com

♦ IX Międzynarodowe Mistrzostwa w Grach Matematycznych i Logicznych,
1995 r., (finał regionalny, zadanie 8).


Niech x oznacza szukaną wartość wpisaną w środkowe pole diagramu, zaś S niech oznacza magiczną sumę. Ponieważ 1+2+3+4+5+6+7=28, to dodając wszystkie trzy sumy wzdłuż każdego z trzech narysowanych na diagramie odcinków, otrzymamy zależność

    \[3S=28+2x,\]

pole centralne bowiem będzie policzone trzy razy. Stąd liczba 28+2x=2(14+x) jest podzielna przez 3. To się może zdarzyć jedynie dla x=1 lub x=4 lub x=7, wtedy możliwe sumy magiczne wynoszą odpowiednio S=10 lub S=12 lub S=14.

Należy pamiętać, że to nie jest jeszcze pełne rozwiązanie! Pokazaliśmy bowiem dopiero, że znalezione liczby 1, 4 i 7 tylko mogą ale wcale nie muszą być dobre. Aby to ostatecznie rozstrzygnąć wystarczy dla każdej z tych liczb wskazać odpowiednie wypełnienie diagramu, zgodne z nałożonymi warunkami. Niestety to rozwiązujący musi wiedzieć, czy to już jest właściwy moment na taką weryfikację. Jeśli wskazanie stosownego przykładu się nie udaje, należy znów wrócić do rozważań ogólnych.
Nasz przykład na szczęście jest na tyle prosty, że zbudowanie odpowiednich przykładów nie należy do trudnych. Mamy więc trzy możliwe rozwiązania, pokazane poniżej.

Rendered by QuickLaTeX.com



2. Zaczarowany kwadrat.
Rozmieść liczby 2, 3, 4, 5, 6, 8 i 9 w pustych polach pokazanej planszy w taki sposób, aby suma każdych czterech liczb wpisanych na pola tworzące kwadrat 2×2 była zawsze taka sama.

Rendered by QuickLaTeX.com

♦ X Międzynarodowe Mistrzostwa w Grach Matematycznych i Logicznych,
1996 r., (półfinał, zadanie 7).


Dla wygody i jasności omówienia zadania, wprowadźmy oznaczenia wartości poszczególnych pól diagramu jak poniżej.

Rendered by QuickLaTeX.com

Porównując ze sobą sumy czwórek liczb ustawionych w polach tworzących dwa górne kwadraty 2×2, otrzymamy zależność 1+a+c+d=a+b+d+7, czyli c=b+6. Ponieważ wszystkie liczby w diagramie są z zakresu od 1 do 9, więc b=2 lub b=3 (liczba 1 jest już wykorzystana), a wtedy odpowiednio c=8 lub c=9.

Załóżmy, że b=2 i c=8. W sposób podobny jak przed chwilą, możemy porównać sumy z dwóch lewych kwadratów, prowadzi to do zależności

    \[1+a+8+d=8+d+e+f\quad\Longleftrightarrow\quad 1+a=e+f.\]

Liczby e i f są róże i nie mniejsze od 2 (mniejsze są już wykorzystane), stąd 1+a=e+f\geqslant 3+4, czyli a\geqslant 6, a to daje nam możliwości a=6 albo a=9. Gdy a=6, to e+f=7, więc \{e,\,f\}=\{3,\,4\}. Zauważmy jeszcze, że porównując odpowiednio sumy liczb z wszystkich czterech kwadratowych obszarów, otrzymamy równość 1+g=b+e, czyli g=1+e. To oznacza, że nie może być e=3, bo wtedy g=4 i f=4, zatem e=4, g=3 i f=5. Pozostałe pola można uzupełnić w jednoznaczny sposób. Jeśli zaś a=9, to e+f=10, czyli f+g=11. Ponieważ wartości 7, 8 i 9 są już przypisane konkretnym polom, to f,g\leqslant 6 i ostatnia równość wymusza \{f,\,g\}=\{5,\,6\}. Znów nie może być g=6, bo wówczas byłoby e=g-1=5, a przecież e\neq f. Stąd g=5, e=4 i f=6. Dotychczasowe rozważania prowadzą do dwóch możliwych rozwiązań:

Rendered by QuickLaTeX.com

Zbadajmy teraz przypadek b=3 i c=9. Mamy 1+a=e+f\geqslant 2+4, skąd a\geqslant 5, czyli a\in\{5,6,8\}. Zauważmy jeszcze, że ponieważ 1+g=3+e, to g=e+2 i liczby e oraz g są tej samej parzystości; muszą to zatem być liczby parzyste (bo nieparzysta niewykorzystana jeszcze wartość jest tylko jedna – równa 5). Jeśli a=5, to e+f=6, czyli \{e,f\}=\{2,4\}. Nie może być e=2, bo wówczas g=4=f. Zatem e=4, g=6 i f=2. Załóżmy teraz, że a=6. Wtedy e+f=7 i – patrząc na pozostałe jeszcze wartości do wykorzystania – musi być \{e,f\}=\{2,5\}. Ale e jest parzyste, stąd e=2, f=5 i g=4. Pozostaje do sprawdzenia a=8. Wtedy e+f=9, stąd (znów wykorzystujemy parzystość liczby e) mamy e=4 i f=5, a dalej g=6. Tym razem otrzymujemy kolejne trzy rozwiązania:

Rendered by QuickLaTeX.com

Łącznie zadanie ma pięć rozwiązań przedstawionych na diagramach powyżej.


3. Magiczny sześciokąt.
Pokazany na rysunku sześciokąt, wypełniony liczbami od 1 do 19, jest magiczny. Sumy liczb w każdym z piętnastu wskazanych kierunków są jednakowe. Niestety, przez nieuwagę wymazano wartości przypisane niektórym polom. Przywróć diagram do dawnej świetności uzupełniając wszystkie brakujące liczby.

Rendered by QuickLaTeX.com

♦ IV Międzynarodowe Mistrzostwa w Grach Matematycznych i Logicznych,
1990 r., (eliminacje kategoria L1, zadanie 2).


Oznaczmy przez S magiczną sumę w sześciokącie. Ponieważ 1+2+3+\ldots+19=190, a w ustalonym kierunku figurę można podzielić na pięć rozłącznych rzędów, to 5S=190, czyli S=38.

Przyjmijmy oznaczenia wartości przypisanych poszczególnym polom diagramu.

Rendered by QuickLaTeX.com

Znając S, mamy natychmiast e=S-14-1-17=6, n=S-18-17=3. Wówczas m+l=S-3=35. Wszystkie wartości pochodzą ze zbioru liczb nie większych niż 19, więc \{m,l\}=\{16,19\}. Zauważmy, że a+14+b=S, stąd a+b=24. Ale rozkłady liczby 24 na sumę dwóch różnych składników z interesującego nas zbioru wyglądają następująco:

    \[24=19+5=18+6=17+7=16+8=15+9=14+10=13+11,\]

przy czym składniki 19, 18, 17, 16, 14 i 13 są już wykorzystane, stąd \{a,b\}=\{9,15\}. Gdyby a=9, to d=S-a-13=16 co jest niemożliwe, bo m=16 albo l=16. Zatem a=15 i b=9. Stąd dalej d=10 i g=S-9-18=11. Wtedy c=S-11-6-13=8. Gdyby teraz m=16, to k=S-11-1-16=10=d co jest wykluczone. Zatem m=19, l=16 i dalej i=S-10-16=12, f=S-14-8-12=4, h=S-18-1-4-10=5 i w końcu k=7 oraz j=2. Ostatecznie otrzymujemy jedyne rozwiązanie:

Rendered by QuickLaTeX.com



4. Kwadrat prawie magiczny.
Kwadrat ten był niemal magiczny: suma liczb wpisanych w każdy z czterech wierszy, w każdą z czterech kolumn i na obu przekątnych była zawsze taka sama. Jednak użyte liczby nie były kolejne, ponieważ największa z nich wynosiła 92. Niestety, osiem liczb tworzących ten wyjątkowy diagram, zostało przypadkowo skasowanych. Ustal, jakie liczby zostały wymazane i gdzie się one znajdowały.

Rendered by QuickLaTeX.com

♦ VI Międzynarodowe Mistrzostwa w Grach Matematycznych i Logicznych,
1992 r., (ćwierćfinał szkolny, zadanie 3).


Nieznane wartości oznaczmy jak na poniższym rysunku.

Rendered by QuickLaTeX.com

W szczególności mamy S=26+f. Stąd i z trzeciej sumy poziomej (także równej S) wynika, że 21+e+f=26+f, czyli e=5. Podobnie z sumy ukośnej 23+f+h=26+f, zatem h=3. Z sumy drugiej pionowej mamy teraz S=25+a+e=30+a, możemy więc wykorzystując pierwszą sumę poziomą, napisać równość 30+a=15+a+b, więc b=15. Ponieważ czwarta kolumna ma sumę wyrazów S=10+b+d+h=28+d, to (drugi wiersz) mamy także 21+c+d=28+d i c=7. W ten sposób liczbę nieznanych wartości zredukowaliśmy o połowę i wiemy też, że

    \[S=30+a=28+d=32+g=26+f.\]

To oznacza, że największą spośród wszystkich liczb wpisanych do diagramu musi być f=S-26, zatem f=92 i jednocześnie S=118. To daje nam już jedyne możliwe końcowe wypełnienie tablicy

Rendered by QuickLaTeX.com



5. Kwadrat magiczny różnic.
Uzupełnij wszystkie pola kwadratu liczbami od 1 do 16 (każdej z nich używając dokładnie jeden raz) w taki sposób, aby w każdym wierszu, w każdej kolumnie i na wyróżnionej przekątnej, suma kolejnych różnic sąsiadujących ze sobą liczb (od wartości większej odejmujemy mniejszą) zawsze była równa 12.

Rendered by QuickLaTeX.com

♦ IV Międzynarodowe Mistrzostwa w Grach Matematycznych i Logicznych,
1990 r., (półfinał, zadanie 5).


Przyjmijmy następujące oznaczenia

Rendered by QuickLaTeX.com

Ponieważ najwięcej informacji niesie druga kolumna i ostatni wiersz diagramu, rozpoczniemy od ustalenia wartości przypisanych polom h, k oraz l. Mamy (3-1)+(h-1)+|h-k|=12, oraz (16-k)+(15-k)+15-l=12, czyli

    \[h+|h-k|=11\qquad\text{oraz}\qquad 2k+l=34.\]

Z pierwszej równości wynika w szczególności, że liczba k jest nieparzysta (w przeciwnym razie liczby h i |h-k| obie byłyby tej samej parzystości i ich suma nie mogłaby być równa 11). Druga zależność pociąga parzystość liczby l i wśród dopuszczalnych (jeszcze nie wykorzystanych) wartości rozwiązania są następujące: (k,l)\in\{(11,12),(13,8)\}. Gdyby k=13, to h+|h-13|\geqslant 13, więc musi być k=11 i l=12.

Kluczowym spostrzeżeniem będzie teraz obserwacja, że jedna z niewiadomych musi być równa 2. Dwójka nie może pojawić się ani w pierwszej kolumnie, ani w trzeciej kolumnie, ani na wyróżnionej przekątnej. Wówczas bowiem (dzięki wartościom 16 i 15 w dolnym wierszu) odpowiednia suma różnic przekroczyłaby 12. Zatem f=2 albo j=2. Gdyby zachodziła druga ewentualność, to mielibyśmy |c-f|+(f-2)+(12-2)=12, czyli |c-f|+f=4. Ale f\geqslant 4, bo wszystkie mniejsze wartości są już wykorzystane, więc musiałoby być c=f=4. To oznacza, że f=2. Wtedy mamy (c-2)+(j-2)+|12-j|=12, czyli |12-j|+j+c=16. Ale |12-j|+j\geqslant 12, więc c\leqslant 4, co oznacza, że c=4. Możemy napisać też (d-1)+(e-1)+(e-2)=12, czyli d+2e=16. Liczba d jest więc parzysta i d,e\geqslant 5, więc (d,e)=(6,5). Teraz już łatwo wyznaczamy a=8 oraz b=7.

Do ustalenia pozostaje jeszcze trzeci wiersz, którego wyrazy tworzą zbiór \{9,10,13,14\}. Analizując sumy różnic z poszczególnych kolumn otrzymujemy jedynie \{h,j\}=\{9,10\} oraz \{g,i\}=\{13,14\}. Do bezpośredniego sprawdzenia mamy więc cztery przypadki, z których dwa pokazane poniżej tworzą ostateczne rozwiązanie.

Rendered by QuickLaTeX.com



Zadania do samodzielnego rozwiązania.

1. Liczbowa piramida.
W kółka piramidy należy wpisać liczby całkowite od 1 do 13 w taki sposób, aby sumy liczb wpisanych w cztery kółka leżące na dowolnej, wspólnej prostej (poziomej lub ukośnej) były równe. W odpowiedzi wystarczy podać liczbę wpisaną w kółko umieszczone w wierzchołku piramidy.

Rendered by QuickLaTeX.com

♦ XII Międzynarodowe Mistrzostwa w Grach Matematycznych i Logicznych,
1997/1998 r., (ćwierćfinał, zadanie 11).


2. Magiczny kwiat.
Uzupełnij diagram liczbami od 3 do 11 wpisując je w puste kółka w taki sposób, aby sumy czterech wartości umieszczonych w wierzchołkach powstałych rombów zgadzały się z wartościami podanymi wewnątrz tych czworokątów.

Rendered by QuickLaTeX.com

♦ XXII Międzynarodowe Mistrzostwa w Grach Matematycznych i Logicznych,
2008 r., (półfinał, zadanie 13).


3. Math Mobile.
Leonard narysował schemat Math Mobile.

Rendered by QuickLaTeX.com

Każda liczba całkowita od 1 do 13 powinna być napisana w jednym małym kółku (po jednej w kółku). Suma trzech liczb dookoła trójkąta, czterech liczb dookoła kwadratu, sześciu liczb dookoła sześciokąta i pięciu liczb dookoła pięciokąta musi być zawsze taka sama. Jest to również suma trzech liczb na każdym z trzech okręgów dużych kół (zaznaczonych linią przerywaną). Ile wyniesie iloczyn trzech liczb (zaznaczonych strzałkami) napisanych w małych kółkach w środkach dużych kół?

♦ XXX Międzynarodowe Mistrzostwa w Grach Matematycznych i Logicznych,
2016 r., (finał międzynarodowy – dzień I, zadanie 16).


Surakarta

Surakarta jest planszową grą logiczną dla dwóch osób o wyjątkowo prostych zasadach i – co może zaskakiwać – niezwykłej dynamice.

Gra pochodzi z Indonezji, a grano w nią prawdopodobnie już w XVII wieku. Planszę rysowano bezpośrednio na ziemi, a rolę pionków przejmowały kamyki. Zabawę można też spotkać pod nazwą Solo (tak też nazywane jest potocznie największe miasto usytuowane na wyspie Jawa).

Rozgrywka odbywa się na planszy pokazanej na rysunku. Każdy z grających dysponuje początkowo 12 pionkami, które ustawia się na skrzyżowaniach linii planszy w czterech rzędach: po dwa rzędy dla każdego gracza.

Reguły gry

  1. Celem gry jest zbicie wszystkich pionków przeciwnika.
  2. Gracze wykonują ruchy naprzemiennie, rozpoczyna grający ciemnymi.
  3. Każdy ruch może być:
    • zwykłym posunięciem – gracz przesuwa dowolny swój pionek na sąsiednie wolne pole wzdłuż linii poziomej lub pionowej (niektóre źródła dopuszczają także posunięcia po skosie);
    • biciem – pionek bijący może zaatakować pionek przeciwnika i zbić go zastępując jego pozycję na planszy, jeśli wszystkie pola pomiędzy oboma pionkami wzdłuż linii planszy są wolne i dodatkowo linia ta zawiera przynajmniej jeden fragment łuku z któregoś naroża. Przykładowo, pionek z pola B3 może zaatakować pionek  rywala stojący na D6, jeśli tylko na przynajmniej jednej ścieżce (takie ścieżki są dwie, bo odpowiednie linie niebieska i czerwona tworzą pętle) łączącej oba pola i  biegnącej wzdłuż linii niebieskiej nie znajduje się żaden inny pionek. W szczególności pionki stojące w narożach kwadratu A1-F1-F6-A6 nie mogą wykonywać bić (ani same nie mogą być zbite).
  4. Bicia nie są przymusowe.
  5. Jeśli grany jest mecz złożony z kilku partii, to po każdym pojedynku zlicza się liczbę pionków pozostałych na planszy jako punkty gracza, który wygrał partię. Mecz zwycięża ta osoba, która zgromadzi więcej punktów.
Źródła

Królewska gra z Ur

Trudno nie zacząć od tej właśnie pozycji, o której zwykle się mówi, iż jest najstarszą grą świata liczącą sobie już ok. 4500 lat. Oczywiście dla osób mało zorientowanych w temacie może to być nawet informacja wywołująca jakąś namiastkę sensacji… Jednak zerknięcie na dokładniejszy opis gry i chwila głębszej refleksji spowodują pojawienie się wątpliwości i pytań typu To ludzie wcześniej nie znali żadnych gier? No i sensacja pryśnie.

Nie będę się odnosił do informacji czysto historycznych chyba, że będzie to miało wpływ na reguły, które całą zabawą kierują. Zainteresowanych odsyłam choćby do Wikipedii.

Reguły gry

Podane zasady pochodzą z rekonstrukcji, częściowo uzyskanej na podstawie tabliczki datowanej na 177 rok p.n.e., znajdującej się obecnie w Muzeum Brytyjskim. Spotkać można też nieco inne wersje rozgrywki – niektóre z nich będą tu krótko omówione. W oryginalnych zasadach grający posługują się czterema czworościennymi kostkami, w których wyróżnione są dwa wierzchołki.

Wariant A.

Pojedynek prowadzony jest na planszy o 20 kwadratowych polach. Z tego też powodu zabawa była nazywana Grą dwudziestu pól. Kształt planszy i sposób poruszania się po niej przedstawia ilustracja.

  1. Gra przeznaczona jest dla dwóch osób, osobę rozpoczynającą wybiera się poprzez losowanie.
  2. Każdy dysponuje siedmioma pionkami – pionki rywali są w różnych kolorach; celem rozgrywki jest przeprowadzenie wszystkich swoich pionków przez planszę. Wygrywa ten z graczy, który uczyni to jako pierwszy.
  3. Ruch polega na jednokrotnym rzucie kostką sześcienną i przesunięciu swojego pionka wzdłuż pokazanego na ilustracji toru lub wprowadzenia nowego pionka na planszę, przy czym:
    • wyrzucenie 1, 2, 3 bądź 4 oczek daje możliwość przesunięcia jednego swojego pionka o liczbę wyrzuconych oczek lub wprowadzenie nowego pionka do gry odpowiednio na pole pierwsze, drugie, trzecie bądź czwarte;
    • wyrzucenie 5 oczek skutkuje utratą kolejki;
    • wyrzucenie 6 oczek daje prawo do ponownego rzutu (jednak gracz nie przestawia żadnego pionka);
    • aby zdjąć pionka z planszy – po zakończeniu nim pełnego ,,okrążenia” – należy wyrzucić dokładnie brakującą do mety liczbę oczek.
  4. Wyróżnionych rozetami pięć pól to tzw. pola specjalne – gracz, którego pion w danym ruchu stanie na polu specjalnym zyskuje dodatkowy ruch, liczba następujących po sobie dodatkowych ruchów może być dowolnie duża.
  5. Na jednym polu planszy może znajdować się co najwyżej jeden pionek. Jeśli w danym ruchu pionek trafia na pole, na którym już znajduje się pionek rywala, może nastąpić bicie – wówczas stary (zbijany) pionek jest zdejmowany z planszy i musi rozpocząć wędrówkę na nowo, zaś pionek bijący zajmuje jego dotychczasowe miejsce.
  6. Nie wolno bić pionków stojących na polach specjalnych.
  7. Jeśli jest to możliwe trzeba wykonać ruch, w przeciwnym przypadku – gracz traci kolejkę.

Wariant B.

Tory, po których poruszają się pionki graczy są przedstawione na kolejnej ilustracji (tor drugiego gracza przebiega symetrycznie). Pokazana ścieżka liczy dokładnie 20 pól – co może bardziej pasuje do wspomnianej alternatywnej nazwy gry. Elementem losującym w grze są trzy jednakowe kostki czworościenne, każda kostka ma dwa wierzchołki czerwone i dwa wierzchołki białe. Rzut wszystkimi kośćmi jednocześnie może skończyć się na jeden z 4 sposobów:

  • wszystkie 3 wierzchołki (górne) są czerwone – 5 punktów,
  • dwa wierzchołki czerwone i jeden biały – 1 punkt,
  • jeden czerwony i dwa białe – 0 punktów,
  • wszystkie 3 wierzchołki białe – 4 punkty.

  1. Gra przeznaczona jest dla dwóch osób, osobę rozpoczynającą wybiera się poprzez losowanie.
  2. Każdy dysponuje siedmioma pionkami – pionki rywali są w różnych kolorach; celem rozgrywki jest przeprowadzenie wszystkich swoich pionków przez planszę. Wygrywa ten z graczy, który uczyni to jako pierwszy.
  3. Ruch polega na jednokrotnym rzucie trzema kostkami czworościennymi  i przesunięciu swojego pionka wzdłuż pokazanego na ilustracji toru lub wprowadzenia nowego pionka na planszę, przy czym:
    • wybrany pionek (lub kilka pionków) przesuwamy łącznie o tyle pól, ile uzyskaliśmy punktów z rzutu;
    • zdobycie 4 lub 5 punktów uprawnia do wprowadzenia jednego pionka na planszę – na pierwsze pole trasy danego gracza, albo przesunięcia pionków już znajdujących się na planszy; w obu tych przypadkach gracz ma prawo do dodatkowego ruchu;
    • gdy w danym ruchu pionek opuszcza ostatnie pole swojej trasy, należy zdjąć go z planszy.
  4. Pionki graczy mogą się wzajemnie atakować i zbijać – poza pięcioma polami wyróżnionymi symbolem rozety (tzw. azyle) i polami z linii środkowej planszy – gdzie dojść do zbicia może wyłącznie w sytuacji, gdy pionki zbijany i bijący nie stoją w azylu i poruszają się w tym samym kierunku.
  5. Na jednym polu – z wyłączeniem pól wyróżnionych – może znajdować się co najwyżej jeden pionek. W każdym azylu może stać dowolnie wiele pionków obu graczy.
  6. Jeśli jest to możliwe trzeba wykonać ruch, w przeciwnym przypadku – gracz traci kolejkę.

Oczywiście można mieszać zasady z obu wariantów lub też dokładać swoje własne pomysły, według uznania. W wariancie B czworościenne kostki można zastąpić innym mechanizmem losującym, warto jednak znać dokładne prawdopodobieństwa występowania poszczególnych konfiguracji:

Konfiguracja Prawdopodobieństwo
5 punktów (= 3 czerwone) \frac{1}{8}
4 punkty (= 0 czerwonych) \frac{1}{8}
1 punkt (= 2 czerwone) \frac{3}{8}
0 punktów (= 1 czerwony) \frac{3}{8}

Można więc teoretycznie używać trzech monet i uznać, że wypadnięcie na danej monecie reszki oznacza uzyskanie koloru czerwonego. Odpowiednie prawdopodobieństwa, przy jednoczesnym rzucie trzema monetami, będą wówczas zgodne z powyższymi wartościami.

Źródła