Równania i układy równań – część I

Rozwiązywanie układów równań to jedna z typowych umiejętności nabywanych w czasie edukacji na wszystkich praktycznie poziomach (gdzie pojawia się matematyka) – od szkoły podstawowej aż do studiów. Bogaty wachlarz metod, które mogą być wykorzystane do rozwiązania konkretnego zadania tego typu sprawia, że układy równań są tematem dość wdzięcznym.

W niniejszym wpisie chciałbym przedstawić kilka przykładów, które śmiało można rozwiązywać w starszych klasach szkoły podstawowej. Nie wymagają bowiem one, poza (być może) pewnym pomysłem, żadnej specjalistycznej wiedzy. Tradycyjnie na koniec, kilka przykładów pozostawiam do samodzielnego rozwiązania.

1. Rozwiązać układ równań

    \[\left\{  \begin{array}{l} (x+y)(x+y+z)=72\\ (y+z)(x+y+z)=120\\ (x+z)(x+y+z)=96 \end{array} \right..\]

♦ Koło Matematyczne Gimnazjalistów SEM, 2010/2011.


Czynnikiem, który powtarza się w każdym równaniu jest suma wszystkich niewiadomych x+y+z, oznaczmy ją przez S i dodajmy wszystkie równania stronami. Otrzymamy wówczas

    \[(x+y)S+(y+z)S+(z+x)S=288.\]

Wyłączmy teraz wspólny wyraz S przed nawias:

    \[S(\underbrace{x+y+y+z+z+x}_{=2S})=288\quad\text{czyli}\quad 2S^2=288.\]

Stąd S^2=144 i S=12 lub S=-12.

Wracając do wyjściowego układu równań mamy wtedy

    \[\left\{  \begin{array}{l} x+y=6\\ y+z=10\\ x+z=8 \end{array} \right.\qquad\text{lub}\qquad \left\{  \begin{array}{l} x+y=-6\\ y+z=-10\\ x+z=-8 \end{array} \right..\]

Jeśli teraz poszczególne równania z obu układów będziemy odejmowali od zależności x+y+z=\pm12 (dla układu z lewej strony S=12, a dla układu z prawej strony S=-12), to otrzymamy kolejno

    \[z=6,\,\,x=2,\,\,y=4\qquad\,\,\text{albo}\qquad\,\, z=-6,\,\,x=-2,\,\,y=-4.\]

Na koniec sprawdzamy, że znalezione dwie trójki liczb (x,y,z)=(2,4,6) lub (-2,-4,-6) spełniają warunki zadania, stanowią więc jego rozwiązanie.



2. Rozwiązać układ równań

    \[\left\{  \begin{array}{l} xy=20\\ yz=12\\ x+y+z=12 \end{array} \right..\]


Zadanie można rozwiązać bezpośrednio: wyznaczając z pierwszych dwóch równań niewiadome z oraz x względem y i wstawiając te wartości do ostatniego równania. Można też dodać dwie pierwsze zależności stronami i wykorzystać fakt, że x+z=12-y. Wtedy

    \[xy+yz=32\quad\Rightarrow\quad y(x+z)=32\quad\Rightarrow\quad y(12-y)=32.\]

Stąd y^2-12y+32=0, czyli (y-8)(y-4)=0. To oznacza, że y=4 lub y=8. Wówczas odpowiednio x=\frac{20}{4}=5 lub x=\frac{20}{8}=\frac{5}{2} oraz z=\frac{12}{4}=3 lub z=\frac{12}{8}=\frac{3}{2}.

Po sprawdzeniu, mamy ostatecznie dwa rozwiązania:

    \[(x,y,z)=(5,4,3)\qquad\text{lub}\qquad(x,y,z)=\left(\frac{5}{2},8,\frac{3}{2}\right).\]



3. Rozwiązać układ równań

    \[\left\{  \begin{array}{l} a^2+b^2=25\\ 3(a+b)-ab=15 \end{array} \right..\]

♦ LV Niemiecka Olimpiada Matematyczna, 2015/2016.


W przeciwieństwie do poprzednich przykładów, w danym układ nie widać od razu narzucającej się ,,symetrii” pozwalającej na jakieś uproszczenia. Można jedna wspomóc się wykorzystując stosowne podstawienie: niech x=ab oraz y=a+b. Wówczas, ponieważ y^2-2x=(a+b)^2-2ab=a^2+b^2, to otrzymamy

    \[\left\{  \begin{array}{l} y^2-2x=25\\ 3y-x=15 \end{array} \right..\]

Teraz już łatwo – z drugiego równania wyznaczamy x=3y-15 i wstawiamy do pierwszego: y^2-6y+5=0, czyli (y-5)(y-1)=0. Stąd y=1 lub y=5, a to prowadzi do x=-12 lub odpowiednio x=0.

Nasze zadanie sprowadziliśmy więc do rozwiązania dwóch układów równań:

    \[\left\{  \begin{array}{l} ab=-12\\ a+b=1 \end{array} \right.\qquad\text{lub}\qquad  \left\{  \begin{array}{l} ab=0\\ a+b=5 \end{array} \right..\]

Układy takie rozwiązujemy zwykłą ,,szkolną” metodą podstawiania lub graficznie: równanie ab=-12 opisuje hiperbolę, zaś a+b=1 jest równaniem prostej. Ostatecznie otrzymujemy cztery możliwe rozwiązania (a,b):

    \[(-3,4),\qquad (4,-3),\qquad (5,0),\qquad (0,5).\]



4. Rozwiązać układ równań

    \[\left\{  \begin{array}{l} x(y-x)=3\\ y(4y-3x)=2 \end{array} \right..\]

♦ Koło Matematyczne Gimnazjalistów SEM, 2010/2011.


Gdyby x=0, to pierwsze równanie nie byłoby spełnione, więc możemy założyć, że x\neq 0 i z pierwszej równości wyznaczamy y=\frac{3}{x}+x. Podstawiając to do równania drugiego, otrzymamy

    \[\left(\frac{3}{x}+x\right)\left(\frac{12}{x}+4x-3x\right)=2.\]

Mnożąc obie strony przez x^2 i pozbywając się nawiasów, dostajemy

    \[(3+x^2)(12+x^2)=2x^2\qquad\Rightarrow\qquad x^4+13x^2+36=0.\]

Jednak ostatnie równanie nie ma rozwiązań, bo lewa strona (jako suma kwadratów) jest liczbą dodatnią. To dowodzi, że dany układ równań nie posiada żadnych rozwiązań.



Zadania do samodzielnego rozwiązania.

1. Rozwiązać układ równań

    \[\left\{ \begin{array}{l} x+\dfrac{1}{y}=-1\\[0.27cm] y+\dfrac{1}{z}=\dfrac{1}{2}\\[0.27cm] z+\dfrac{1}{x}=2 \end{array} \right..\]


2. Rozwiązać układ równań

    \[\left\{\begin{array}{l} a+2b+3c=12\\ 2ab+3ac+6bc=48  \end{array}\right..\]


3. Rozwiązać układ równań

    \[\left\{\begin{array}{l} (x+y)^2-3(x+y)=4\\[0.23cm] \dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}  \end{array}\right..\]


4. Rozwiązać układ równań

    \[\left\{  \begin{array}{l} x^2+y=xy^2\\ 2x^2y+y^2=x+y+3xy \end{array} \right..\]