Matura rozszerzona z matematyki (maj 2023) – rozwiązania

Poniżej prezentujemy rozwiązania wszystkich zadań maturalnych z matematyki dla poziomu rozszerzonego, z którymi abiturienci mierzyli się 12. maja 2023 r. Zadania pochodzą z arkusza opublikowanego w serwisie Centralnej Komisji Egzaminacyjnej.

Zadanie 1. (0-1)
Granica \lim\limits_{x\to 1}\dfrac{x^3-1}{(x-1)(x+2)} jest równa
   A. (-1)
   B. 0
   C. \frac{1}{3}
   D. 1


Rozkładamy licznik na czynniki (różnica sześcianów) i skracamy:

(1)   \begin{eqnarray*} \lim\limits_{x\to 1}\dfrac{x^3-1}{(x-1)(x+2)}&=&\lim\limits_{x\to 1}\dfrac{(x-1)(x^2+x+1)}{(x-1)(x+2)}=\nonumber\\ &=&\lim\limits_{x\to 1}\dfrac{x^2+x+1}{x+2}=\dfrac{1+1+1}{1+2}=1.\nonumber \end{eqnarray*}

Zatem poprawną jest odpowiedź D.



Zadanie 2. (0-1)
Dane są wektory \vec{u} =[4,-5] oraz \vec{v} =[-1,-5]. Długość wektora \vec{u}-4\vec{v} jest równa
   A. 7
   B. 15
   C. 17
   D. 23


Obliczamy współrzędne interesującego nas wektora:

    \[\vec{u}-4\vec{v}=[4,-5]-4\cdot[-1,-5]=[4-(-4),-5-(-20)]=[8,15].\]

Długość tego wektora wynosi \sqrt{8^2+15^2}=\sqrt{64+225}=\sqrt{289}=17.

Poprawną odpowiedzią jest C.



Zadanie 3. (0-1)
Punkty A, B, C, D, E leżą na okręgu o środku S. Miara kąta BCD jest równa 110^\circ, a miara kąta BDA jest równa 35^\circ (zobacz rysunek).

\begin{tikzpicture}[scale=1.3] \draw (0,0) circle (2cm); \coordinate (A) at (275:2); \coordinate (B) at (345:2); \coordinate (C) at (55:2); \coordinate (D) at (125:2); \coordinate (E) at (200:2);  \foreach \x/\w in {A/275,B/345,C/55,D/125,E/200}   \draw[fill=black] (\x) circle (1pt) node at (\w:2.28) {$\x$};  \draw[fill=black] (0,0) circle (1pt) node[below right] {$S$}; \draw[thick] (A)--(B)--(C)--(D)--(E)--cycle; \draw (B)--(D)--(A);  \draw[thin,shift={(C)}] (180:0.7) arc (180:290:0.7) node[scale=0.75] at (235:0.4) {$110^\circ$}; \draw[thin,shift={(D)}] (290:1.3) arc (290:325:1.3) node[scale=0.8] at (307:1) {$35^\circ$}; \draw[thin,shift={(E)}] (327:0.6) arc (327:432:0.6); \end{tikzpicture}

Wtedy kąt DEA ma miarę równą
   A. 100^\circ
   B. 105^\circ
   C. 110^\circ
   D. 115^\circ


\begin{tikzpicture}[scale=1.3] \draw (0,0) circle (2cm); \coordinate (A) at (275:2); \coordinate (B) at (345:2); \coordinate (C) at (55:2); \coordinate (D) at (125:2); \coordinate (E) at (200:2);  \foreach \x/\w in {A/275,B/345,C/55,D/125,E/200}   \draw[fill=black] (\x) circle (1pt) node at (\w:2.28) {$\x$};  \draw[fill=black] (0,0) circle (1pt) node[left] {$S$}; \draw[thick] (A)--(B)--(C)--(D)--(E)--cycle; \draw (B)--(D)--(A);  \draw[thin,shift={(C)}] (180:0.7) arc (180:290:0.7) node[scale=0.75] at (235:0.4) {$110^\circ$}; \draw[thin,shift={(D)}] (290:1.3) arc (290:325:1.3) node[scale=0.8] at (307:1) {$35^\circ$}; \draw[thin,shift={(E)}] (327:0.6) arc (327:432:0.6); \draw[blue] (A)--(0,0)--(B) (B)--(0,0)--(D); \draw[thin,shift={(E)}] (327:0.6) arc (327:432:0.6); \draw[thin,red] (275:0.5) arc (275:345:0.5) node[red,scale=0.8] at (310:0.35) {$70^\circ$}; \draw[thin,red] (345:0.4) arc (345:485:0.4) node[red,scale=0.7] at (55:0.23) {$140^\circ$}; \end{tikzpicture}

Wyznaczamy kąty środkowe: \angle ASB=2\angle ADB=70^\circ. Podobnie (kąt środkowy wklęsły) \angle BSD=2\angle BCD=220^\circ, czyli kąt wypukły \angle BSD=360^\circ-220^\circ=140^\circ. To oznacza, że \angle AED jest połową kąta wklęsłego \angle ASD=210^\circ i właściwą odpowiedzią jest B.



Zadanie 4. (0-1)
Dany jest zbiór trzynastu liczb \{1,2,3,4,5,6,7,8,9,10,11,12,13\}, z którego losujemy jednocześnie dwie liczby. Wszystkich różnych sposobów wylosowania z tego zbioru dwóch liczb, których iloczyn jest liczbą parzystą, jest
   A. \binom{7}{2}+49
   B. \binom{6}{1}\cdot\binom{7}{1}+49
   C. \binom{13}{2}-\binom{7}{2}
   D. \binom{13}{2}-\binom{6}{2}


Losujemy obie liczby jednocześnie, więc ich kolejność nie ma znaczenia przy zliczaniu. Wszystkich możliwych par liczb utworzonych z elementów danego zbioru jest \binom{13}{2}. Odrzucamy z nich te, których iloczyn jest liczbą nieparzystą, czyli gdy obie liczby są nieparzyste; takich zaś par jest dokładnie \binom{7}{2}, bo liczb nieparzystych w danym zbiorze jest siedem.

Odpowiedź C.



Zadanie 5. (0-2)
Wielomian W(x)=7x^3-9x^2+9x-2 ma dokładnie jeden pierwiastek rzeczywisty. Oblicz ten pierwiastek.

W poniższe kratki wpisz kolejno – od lewej do prawej – pierwszą, drugą oraz trzecią cyfrę po przecinku nieskończonego rozwinięcia dziesiętnego otrzymanego wyniku.

\begin{tikzpicture}[yscale=1.5,scale=0.8] \draw[very thick] (0,0) grid (3,1); \end{tikzpicture}


Zauważmy, że W(0)=-2<0 oraz W(1)=5>0, zatem jedyny pierwiastek rzeczywisty danego wielomianu leży w przedziale (0,1). Z twierdzenia o postaci pierwiastków wymiernych wielomianu mającego współczynniki całkowite wynika, że warto sprawdzić wartości postaci

    \[\frac{\text{dzielniki wyrazu wolnego}}{\text{dzielniki wsp. przy najwyższej potędze }x}.\]

Do przedziału (0,1) trafiają tylko dwa takie ułamki: \dfrac{1}{7} oraz \dfrac{2}{7}. Sprawdzamy, że W(\frac{1}{7})\neq 0, zaś W(\frac{2}{7})=0, a ponieważ \dfrac{2}{7}=0,2857\ldots, to do kratek należy wpisać kolejno cyfry 2, 8 i 5.



Zadanie 6. (0-3)
Liczby rzeczywiste x oraz y spełniają jednocześnie równanie x+y=4 i nierówność x^3-x^2y\leqslant xy^2-y^3. Wykaż, że x = 2 oraz y = 2.


Zauważmy, że dla dowolnych liczb rzeczywistych prawdziwa jest nierówność

    \[4(x-y)^2\geqslant 0,\]

przy czym równość zachodzi w niej wyłącznie wtedy, kiedy x=y.

Załóżmy teraz, że liczby x i y spełniają podane w zadaniu warunki. Rozpisując lewą stronę powyższego wyrażenia otrzymamy

    \[4(x^2-xy+y^2-xy)=4(x^2-xy+y^2)-4xy\geqslant 0.\]

Zastępując teraz (dwukrotnie) czynniki 4 sumą x+y dostaniemy

    \[(x+y)(x^2-xy+y^2)\geqslant xy(x+y),\]

czyli x^3+y^3\geqslant x^2y+xy^2 lub inaczej

    \[x^3-x^2y\geqslant xy^2-y^3.\]

Jest to nierówność, której znak jest skierowany przeciwnie niż w przyjętych założeniach z zadania. Jest to możliwe wyłącznie wtedy, gdy obie te nierówności stają się równościami, czyli (zgodnie z uwagą w pierwszym akapicie) dla x=y. A skoro także x+y=4, to musi być x=y=2, co kończy dowód.



Zadanie 7. (0-3)
Dany jest trójkąt prostokątny ABC, w którym |\angle ABC|=90^\circ oraz |\angle CAB|=60^\circ. Punkty K i L leżą na bokach – odpowiednio – AB i BC tak, że |BK|=|BL|=1 (zobacz rysunek). Odcinek KL przecina wysokość BD tego trójkąta w punkcie N, a ponadto |AD|=2.

\begin{tikzpicture}[scale=1.3] \coordinate (A) at (0,4); \coordinate (B) at (0,0); \coordinate (C) at (6.9282,0); \coordinate (K) at (0,1); \coordinate (L) at (1,0); \coordinate (D) at ($(A)!(B)!(C)$); \coordinate (N) at (intersection of B--D and K--L);  \foreach \x/\r in {A/{above},B/{below left},C/{below},D/{above right},K/{left},L/{below},N/{right}}   \draw[fill=black] (\x) circle (0.8pt) node[\r] {$\x$}; \draw (B)--(D); \draw[thin] (A)--(D) node[midway,above right] {$2$}; \draw[thin] (B)--(L) node[midway,below] {$1$}; \draw[thin] (B)--(K) node[midway,left] {$1$}; \draw[thick] (C)--(B)--(A)--cycle; \draw (K)--(L); \draw[thin,shift={(A)}] (270:0.7) arc (270:330:0.7) node at (300:0.5) {$60^\circ$}; \draw[thin,shift={(D)}] (150:0.5) arc (150:240:0.5) node[scale=2] at (195:0.3) {$\cdot$}; \end{tikzpicture}

Wykaż, że |ND|=\sqrt{3}+1.


Wysokość BD w trójkącie ,,ekierkowym” ABC ma długość równą

    \[|BD|=2\cdot\text{tg}\,60^\circ=2\sqrt{3}.\]

\begin{tikzpicture}[scale=1.3] \coordinate (A) at (0,4); \coordinate (B) at (0,0); \coordinate (C) at (6.9282,0); \coordinate (K) at (0,1); \coordinate (L) at (1,0); \coordinate (D) at ($(A)!(B)!(C)$); \coordinate (N) at (intersection of B--D and K--L);  \foreach \x/\r in {A/{above},B/{below left},C/{below},D/{above right},K/{left},L/{below},N/{right}}   \draw[fill=black] (\x) circle (0.8pt) node[\r] {$\x$}; \draw (B)--(D); \draw[thin] (A)--(D) node[midway,above right] {$2$};  \draw[thin] (B)--(K) node[midway,left] {$1$}; \draw[thick] (C)--(B)--(A)--cycle; \draw (K)--(L); \draw[thin,shift={(A)}] (270:0.7) arc (270:330:0.7) node at (300:0.5) {$60^\circ$}; \draw[thin,shift={(D)}] (150:0.5) arc (150:240:0.5) node[scale=2] at (195:0.3) {$\cdot$}; \coordinate (P) at ($(B)!(N)!(L)$); \draw[fill=blue!20] (B)--(N)--(P)--cycle; \draw[red] (N)--(P) node[below] {$P$}; \draw[thin,red] (N)--(P) node[right,midway,scale=0.7] {$x$}; \draw[thin,red] (L)--(P) node[above,midway,scale=0.7] {$x$}; \end{tikzpicture}

Niech P będzie rzutem prostokątnym punktu N na bok BC i rozważmy trójkąty PLN (prostokątny i równoramienny) oraz NBP (kolejny trójkąt ,,ekierkowy”). Jeżeli oznaczymy |PN|=|LP|=x, to |BP|=1-x i wtedy

    \[\frac{x}{1-x}=\frac{|PN|}{|BP|}=\text{tg}\,60^\circ=\sqrt{3},\]

czyli \sqrt{3}(1-x)=x i dalej x(1+\sqrt{3})=\sqrt{3}, a stąd x=\dfrac{\sqrt{3}}{1+\sqrt{3}}. Wtedy \dfrac{|PN|}{|BN|}=\sin 60^\circ=\dfrac{\sqrt{3}}{2}. To oznacza, że

    \[|BN|=\frac{2x}{\sqrt{3}}=\frac{2}{1+\sqrt{3}}=\sqrt{3}-1.\]

Ostatecznie |ND|=|BD|-|BN|=2\sqrt{3}-(\sqrt{3}-1)=\sqrt{3}+1. To kończy dowód.



Zadanie 8. (0-3)
W pojemniku jest siedem kul: pięć kul białych i dwie kule czarne. Z tego pojemnika losujemy jednocześnie dwie kule bez zwracania. Następnie – z kul pozostałych w pojemniku – losujemy jeszcze jedną kulę. Oblicz prawdopodobieństwo wylosowania kuli czarnej w drugim losowaniu.


Schemat rozwiązania najlepiej pokazać w formie grafu. Po pierwszym losowaniu w pojemniku zostanie pięć kul, przy czym mogły to być: 3 kule białe i dwie czarne (3b+2c) albo 4 białe i jedna czarna (4b+1c) albo same kule białe (5b).

\begin{tikzpicture}[scale=1.3,sibling distance=25mm, level distance=20mm]  \node {$(5b+2c)$}     child {node {$(3b+2c)$}              child {node {$b$}}       child {node {$c$}}}    child {node {$(4b+1c)$}       child {node {}}       child {node {$b$}}}     child {node {$(5b)$}       child {node {}}        child {node {$c$}}     }; \end{tikzpicture}

Warianty te pojawiają się z prawdopodobieństwami równymi odpowiednio:

    \[p_1=\frac{\binom{5}{2}}{\binom{7}{2}}=\frac{10}{21},\quad p_2=\frac{\binom{5}{1}\binom{2}{1}}{\binom{7}{2}}=\frac{10}{21},\quad p_3=\frac{\binom{2}{2}}{\binom{7}{2}}=\frac{1}{21}.\]

Wylosowanie kuli czarnej w drugim losowaniu jest więc równe:

    \[p_1\cdot \frac{2}{5}+p_2\cdot\frac{1}{5}+p_3\cdot\frac{0}{5}=\frac{2}{7}.\]



Zadanie 9. (0-3)
Funkcja f jest określona wzorem f(x)=\dfrac{3x^2-2x}{x^2+2x+8} dla każdej liczby rzeczywistej x. Punkt P=(x_0,3) należy do wykresu funkcji f. Oblicz x_0 oraz wyznacz równanie stycznej do wykresu funkcji f w punkcie P.


Dziedzina: x^2+2x+8\neq 0; warunek ten jest spełniony dla wszystkich x\in\mathbf{R}, gdyż wyróżnik tego trójmianu jest ujemny: \Delta=4-32=-28.

Obliczamy wartość x_0. Aby punkt P należał do wykresu funkcji, musi być f(x_0)=3, stąd

    \[\frac{3x_0^2-2x_0}{x_0^2+2x_0+8}=3\quad\Leftrightarrow\quad -2x_0=6x_0+24,\]

czyli x_0=-3.

Obliczamy pochodną funkcji f:

    \[f'(x)=\frac{(6x-2)(x^2+2x+8)-(3x^2-2x)(2x+2)}{(x^2+2x+8)^2}.\]

Potrzebujemy jedynie wartości f'(-3). Mamy

    \[f'(-3)=\frac{(-20)\cdot 11-33\cdot(-4)}{11^2}=-\frac{8}{11}.\]

Szukana styczna ma zatem równanie

    \[y=-\frac{8}{11}(x+3)+3=-\frac{8}{11}x+\frac{9}{11}.\]



Zadanie 10. (0-4)
Rozwiąż nierówność

    \[\sqrt{x^2+4x+4}<\frac{25}{3}-\sqrt{x^2-6x+9}.\]

Wskazówka: skorzystaj z tego, że \sqrt{a^2}=|a| dla każdej liczby rzeczywistej a.


Ponieważ x^2+4x+4=(x+2)^2 oraz x^2-6x+9=(x-3)^2, to dana nierówność przyjmuje postać

    \[|x+2|+|x-3|<\frac{25}{3}.\]

Prowadzi to do trzech przypadków, które możemy zilustrować na osi liczbowej.

\begin{tikzpicture} \draw[very thick, ->] (-3.5,0)--(3.9,0) node[below] {$x$}; \foreach \x in {-2,0,3}   \draw (\x,0)--(\x,-0.07) node[below] {$\x$}; \draw[thin,blue] (-3.2,0.4)--(-2.2,0.4)--(-2,0.05)--(-1.8,0.4)--(2.8,0.4)--(3,0.05)--(3.2,0.4)--(3.8,0.4); \node[above,red,scale=1.3] at (-2.7,0.3) {$1^\circ$};  \node[above,red,scale=1.3] at (0.5,0.3) {$2^\circ$}; \node[above,red,scale=1.3] at (3.5,0.3) {$3^\circ$};   \end{tikzpicture}

Rozważamy kolejne przypadki. Należy pamiętać o zmianie znaku całego wyrażenia spod wartości bezwzględnej, jeśli w danym przedziale jest ono ujemne.

  • 1^\circ.\quad x\in(-\infty,-2].

    Wtedy x+2\leqslant 0 i podobnie x-3\leqslant 0; zmieniamy więc znak w obu składnikach. Dostajemy zatem nierówność

        \[-(x+2)-(x-3)< \frac{25}{3}\quad\Longleftrightarrow\quad -2x+1< \frac{25}{3}\quad\Longleftrightarrow\quad x> -\frac{11}{3}.\]

    Mamy więc w tym przypadku przedział x\in(-11/3,-2].

  • 2^\circ.\quad x\in(-2,3].
  • Wtedy x+2>0 ale x-3\leqslant 0; zmieniamy znak tylko w drugim składniku. Mamy

        \[(x+2)-(x-3)< \frac{25}{3}\quad\Longleftrightarrow\quad 5< \frac{25}{3},\]

    czyli nierónwość prawdziwą; rozwiązanie stanowi w tym przypadku pełen rozpatrywany zakres (-2,3].

  • 3^\circ.\quad x\in(3,\infty).
  • Wtedy x+2>0 i x-3>0; nie zmieniamy znaków. Mamy

        \[(x+2)+(x-3)< \frac{25}{3}\quad\Longleftrightarrow\quad 2x< \frac{28}{3}\quad\Longleftrightarrow\quad x< \frac{14}{3}.\]

    Ten przypadek prowadzi więc do przedziału (3,14/3).

Na koniec, jako rozwiązanie, bierzemy sumę uzyskanych we wszystkich przypadkach zbiorów, czyli x\in (-3,-2]\cup (-2,3]\cup (3,14/3)=(-3,14/3).



Zadanie 11. (0-4)
Określamy kwadraty K_1,\,K_2,\,K_3,\,\ldots następująco:
  • K_1jest kwadratem o boku długości a
  • K_2 jest kwadratem, którego każdy wierzchołek leży na innym boku kwadratu K_1 i dzieli ten bok w stosunku 1 \colon 3
  • K_3 jest kwadratem, którego każdy wierzchołek leży na innym boku kwadratu K_2 i dzieli ten bok w stosunku 1 \colon 3
i ogólnie, dla każdej liczby naturalnej n\geqslant 2,
  • K_n jest kwadratem, którego każdy wierzchołek leży na innym boku kwadratu K_{n-1} i dzieli ten bok w stosunku 1 \colon 3.
Obwody wszystkich kwadratów określonych powyżej tworzą nieskończony ciąg geometryczny. Na rysunku przedstawiono kwadraty utworzone w sposób opisany powyżej.

\begin{tikzpicture}[scale=1.3] \coordinate (A) at (0,0); \coordinate (B) at (4,0); \coordinate (C) at (4,4); \coordinate (D) at (0,4); \node[below] at (2,0) {$a$}; \node[left] at (0,2) {$a$}; \foreach \x in {1,...,10} {   \draw (A)--(B)--(C)--(D)--cycle;   \coordinate (A1) at ($(A)!0.25!(B)$);   \coordinate (B1) at ($(B)!0.25!(C)$);   \coordinate (C1) at ($(C)!0.25!(D)$);   \coordinate (D1) at ($(D)!0.25!(A)$);     \draw (A1)--(B1)--(C1)--(D1)--cycle;   \coordinate (A) at ($(A1)!0.25!(B1)$);   \coordinate (B) at ($(B1)!0.25!(C1)$);   \coordinate (C) at ($(C1)!0.25!(D1)$);   \coordinate (D) at ($(D1)!0.25!(A1)$); } \draw[thick] (0,0)--(4,0)--(4,4)--(0,4)--cycle; \end{tikzpicture}

Oblicz sumę wszystkich wyrazów tego nieskończonego ciągu.


Niech (r_n) oznacza obwód kwadratu K_n dla n=1,2,\ldots. Mamy oczywiście r_1=4a. Wierzchołki kwadratu K_2 dzielą boki kwadratu K_1 w stosunku 1\colon 3, czyli powstają odcinki długości \dfrac{a}{4} oraz \dfrac{3a}{4}. Zatem bok b kwadratu K_2 spełnia zależność:

    \[b^2=\left(\frac{a}{4}\right)^2+\left(\frac{3a}{4}\right)^2=\frac{a^2}{16}+\frac{9a^2}{16}=\frac{10}{16}a^2,\]

a stąd b=\dfrac{\sqrt{10}}{4}a i r_2=4b=a\sqrt{10}. To już oznacza, że ciąg (r_n), jako ciąg geometryczny, ma iloraz równy q=\dfrac{\sqrt{10}}{4}. Suma obwodów wszystkich opisanych w zadaniu kwadratów wynosi więc

    \[S=\frac{r_1}{1-q}=\frac{4a}{1-\frac{\sqrt{10}}{4}}=\frac{16}{4-\sqrt{10}}a=\frac{8(4+\sqrt{10})}{3}a.\]



Zadanie 12. (0-4)
Rozwiąż równanie 3\sin^2x - \sin^2(2x) = 0 w przedziale [\pi,2\pi].


Wykorzystamy równość \sin 2x=2\sin x\cos x. Wówczas dane równanie przyjmuje postać

    \[3\sin^2x-4\sin^2x\cos^2x=0\quad\Leftrightarrow\quad \sin^2x(3-4\cos^2x)=0.\]

Wynika stąd, że \sin^2 x=0 lub \cos^2x=\dfrac{3}{4}, zatem

    \[\sin x=0\quad\text{lub}\quad \cos x=-\frac{\sqrt{3}}{2}\quad\text{lub}\quad\cos x=\frac{\sqrt{3}}{2}.\]

W przedziale [\pi,\,2\pi] dostajemy stąd x=0 lub x=\pi lub x=\dfrac{7\pi}{6} lub x=\dfrac{11\pi}{6}.



Zadanie 13. (0-4)
Czworokąt ABCD, w którym |BC|=4 i |CD|=5, jest opisany na okręgu. Przekątna AC tego czworokąta tworzy z bokiem BC kąt o mierze 60^\circ, natomiast z bokiem AB – kąt ostry, którego sinus jest równy \dfrac{1}{4}. Oblicz obwód czworokąta ABCD.


Przyjmijmy oznaczenia jak na rysunku, w szczególności \sin\alpha=\dfrac{1}{4}.

\begin{tikzpicture}[scale=0.65] \coordinate (A) at (-7.32,4.94); \coordinate (B) at (6.46,6.56); \coordinate (C) at (7.97,2.85); \coordinate (D) at (5.97,-1.73); \coordinate (O) at (4.3,2.9);  \foreach \x/\w in {A/left,B/above,C/right,D/below}   \draw[fill=black] (\x) circle (1pt) node[\w] {$\x$};  \draw[blue] (A)--(C); \draw[thin] (B)--(C) node[midway,right] {$4$}; \draw[thin] (D)--(C) node[midway,right] {$5$}; \draw[thin] (B)--(A) node[midway,above] {$a$}; \draw[thin] (D)--(A) node[midway,below] {$b$};  \draw[thin,shift={(A)}] (352:3) arc (352:366.5:3) node at (360:2.3) {$\alpha$}; \draw[thin,shift={(C)}] (472:1.4) arc (472:532:1.4) node at (501:0.9) {$60^\circ$};  \draw[thick] (A)--(B)--(C)--(D)--cycle; \draw[red] (O) circle (3.387cm); \end{tikzpicture}

Z warunki opisywalności czworokąta na okręgu mamy a+5=b+4, czyli b=a+1. Z twierdzenia sinusów dla trójkąta ABC możemy napisać

    \[\frac{a}{\sin 60^\circ}=\frac{4}{\sin\alpha}\quad\Rightarrow\quad a=\frac{4}{1/4}\cdot\frac{\sqrt{3}}{2}=8\sqrt{3}.\]

Wówczas b=a+1=8\sqrt{3}+1 i obwód całego czworokąta wynosi a+b+9=16\sqrt{3}+10.



Zadanie 14. (0-4)
Dany jest sześcian ABCDEFGH o krawędzi długości 6. Punkt S jest punktem przecięcia przekątnych AH i DE ściany bocznej ADHE (zobacz rysunek).

\begin{tikzpicture}[scale=0.9] \coordinate (A) at (0,0); \coordinate (B) at (5,0); \coordinate (C) at (7,2); \coordinate (D) at (2,2); \coordinate (E) at (0,5); \coordinate (F) at (5,5); \coordinate (G) at (7,7); \coordinate (H) at (2,7); \coordinate (S) at (1,3.5); \draw[thick] (A)--(B)--(C)--(G)--(H)--(E)--cycle (F)--(G) (E)--(F)--(B); \draw[thick,dashed] (A)--(D)--(H) (D)--(C); \draw[dotted,thick,black!75] (A)--(H) (E)--(D); \node[below] at (2.5,0) {$6$};  \foreach \x/\r in {A/{below left},B/{below right},C/right,D/{below right},E/left,F/right,G/{above right},H/above,S/left}   \draw[fill=black] (\x) circle (1pt) node[\r] {$\x$}; \end{tikzpicture}

Oblicz wysokość trójkąta SBH poprowadzoną z punktu S na bok BH tego trójkąta.

Oznaczmy szukaną wysokość przez d. Pole P trójkąta BHS stanowi połowę pola trójkąta ABH, bo S jest środkiem boku AH. Z drugiej strony trójkąt ABH jest połową prostokąta ABGH. Stąd

    \[P=\frac{1}{4}|AB|\cdot|BG|=\frac{1}{4}\cdot 6\cdot 6\sqrt{2}=9\sqrt{2}.\]

\begin{tikzpicture}[scale=0.9] \coordinate (A) at (0,0); \coordinate (B) at (5,0); \coordinate (C) at (7,2); \coordinate (D) at (2,2); \coordinate (E) at (0,5); \coordinate (F) at (5,5); \coordinate (G) at (7,7); \coordinate (H) at (2,7); \coordinate (S) at (1,3.5);  \coordinate (K) at ($(B)!(S)!(H)$);  \draw[fill=yellow!30] (A)--(B)--(G)--(H)--cycle; \draw[fill=blue!30] (S)--(B)--(H)--cycle;  \draw[red,thick] (S)--(K) node[below right,midway] {$d$};  \draw[thick] (A)--(B)--(C)--(G)--(H)--(E)--cycle (F)--(G) (E)--(F)--(B); \draw[thick,dashed] (A)--(D)--(H) (D)--(C); \draw[dotted,thick,black!75] (A)--(H) (E)--(D); \node[below] at (2.5,0) {$6$};  \foreach \x/\r in {A/{below left},B/{below right},C/right,D/{below right},E/left,F/right,G/{above right},H/above,S/left}   \draw[fill=black] (\x) circle (1pt) node[\r] {$\x$}; \end{tikzpicture}

Ponieważ przekątna BH danego sześcianu ma długość |BH|=6\cdot\sqrt{3}, to szukana wysokość ma długość

    \[d=\frac{2P}{|BH|}=\frac{18\sqrt{2}}{6\sqrt{3}}=3\sqrt{\frac{2}{3}}=\sqrt{6}.\]

 

Zadanie 15. (0-5)
Wyznacz wszystkie wartości parametru m\neq 2, dla których równanie

    \[x^2+4x-\frac{m-3}{m-2}=0\]

ma dwa różne rozwiązania rzeczywiste x_1, x_2 spełniające warunek x_1^3+x_2^3>-28.

Aby spełnione były warunki nałożone przez treść zadania na daną funkcję kwadratową, muszą zachodzić zależności:

    \[\Delta >0\quad\wedge\quad x_1^3+x_2^3>-28.\]

Ostatnią nierówność możemy zapisać jako

    \[(x_1+x_2)(x_1^2-x_1x_2+x_2^2)=(x_1+x_2)\big[(x_1+x_2)^2-3x_1x_2\big]>-28,\]

i, dzięki wzorom Viete’a, mamy

    \[-4\left((-4)^2-3\cdot\left(-\frac{m-3}{m-2}\right)\right)>-28.\]

Stąd 16+\dfrac{3(m-3)}{m-2}<7 i dalej \dfrac{9(m-2)+3(m-3)}{m-2}<0. Dzieląc obustronnie przez 3 dostaniemy

    \[\frac{4m-9}{m-3}<0\quad\Leftrightarrow\quad m\in\left(\frac{9}{4},\,3\right).\]

Podobnie warunek z wyróżnikiem:

    \[\Delta=16+4\cdot\frac{m-3}{m-2}=4\cdot\frac{5m-11}{m-2}>0\quad\Leftrightarrow\quad m\in\mathbf{R}\setminus\left[2,\,\frac{11}{5}\right].\]

Ostatecznie, biorąc część wspólną obu otrzymanych zbiorów, uzyskujemy końcową odpowiedź: m\in\left(\dfrac{9}{4},\,3\right)



Zadanie 16. (0-7)
Rozważamy trójkąty ABC, w których A=(0,0), B=(m,0), gdzie m\in(4,+\infty), a wierzchołek C leży na prostej o równaniu y=-2x. Na boku BC tego trójkąta leży punkt D=(3,2).

a) Wykaż, że dla m\in(4,+\infty) pole P trójkąta ABC, jako funkcja zmiennej m, wyraża się wzorem

    \[P(m)=\frac{m^2}{m-4}.\]

b) Oblicz tę wartość m, dla której funkcja P osiąga wartość najmniejszą. Wyznacz równanie prostej BC, przy której funkcja B osiąga tę najmniejszą wartość.


Wyznaczymy najpierw współrzędne punktu C=(x_C,y_C) w zależności od m. Równanie prostej przechodzącej przez punkty B i D ma postać

    \[y=\frac{0-2}{m-3}(x-m)\quad\Leftrightarrow\quad y=\frac{-2}{m-3}x+\frac{2m}{m-3}.\]

Prosta ta przecina prostą y=-2x w punkcie C, którego współrzędne (x_C,y_C) spełniają układ równań

    \[\left\{\begin{array}{l}y=\frac{-2}{m-3}x+\frac{2m}{m-3}\\ y=-2x\end{array}\right..\]

\begin{tikzpicture}[scale=1] \coordinate (A) at (0,0); \coordinate (B) at (6,0); \coordinate (D) at (3,2); \coordinate (C) at (-3,6); \draw[fill=yellow!40] (A)--(B)--(C)--cycle;  \draw[black!70] (-6.4,-1.2) grid (6.3,8.3); \draw[very thick,->] (-6.4,0)--(6.3,0) node[below] {$x$}; \draw[very thick,->] (0,-1.2)--(0,8.3) node[left] {$y$}; \draw[thick,blue,dashed] (-4.3,8.6)--(1,-2) node[below,sloped,midway] {$y=-2x$}; \draw[very thick,brown,dashed] (4,-1.2)--(4,8.3);  \foreach \x in {A,B,D,C}    \draw[fill=black] (\x) circle (1.7pt) node[below left] {$\x$};    \node[below left] at (4,0) {$4$}; \node[above] at (B) {$(m,0)$}; \node[above] at (D) {$(3,2)$}; \end{tikzpicture}

To oznacza, że \displaystyle -\frac{2x}{m-3}+\frac{2m}{m-3}=-2x, a stąd \left(\dfrac{2}{m-3}-2\right)x=\dfrac{2m}{m-3} i

    \[x=\frac{m}{4-m}\quad\text{dla}\quad m>4.\]

Wtedy oczywiście y=-2x=\dfrac{2m}{m-4}.

a) Pole P(m) trójkąta ABC jest równe

    \[P=\dfrac{1}{2}\cdot |AB|\cdot y_C=\frac{1}{2}\cdot m\cdot \frac{2m}{m-4}=\frac{m^2}{m-4}\quad\text{dla}\quad m>4.\]

b) Znajdziemy minimum funkcji P(m) dla m>4. Obliczamy pochodną:

    \[P'(m)=\frac{2m(m-4)-m^2}{(m-4)^2}=\frac{m(m-8)}{(m-4)^2}.\]

Widać, że dla m>4 jedynym miejscem zerowym pochodnej jest m=8. W punkcie tym pochodna zmienia swój znak z ujemnego na dodatni (bo tak zachowuje się funkcja kwadratowa m\mapsto m(m-8)), wobec tego funkcja P(m) osiąga dla m=8 swoje minimum. Wtedy prosta BC ma równanie:

    \[y=-\frac{2}{5}x+\frac{16}{5}.\]



Matura rozszerzona z matematyki (maj 2022) – rozwiązania

Poniżej prezentujemy rozwiązania wszystkich zadań maturalnych z matematyki dla poziomu rozszerzonego, z którymi abiturienci mierzyli się 11. maja 2022 r. Zadania pochodzą z arkusza opublikowanego w serwisie Centralnej Komisji Egzaminacyjnej.

Zadanie 1. (0-1)
Liczba \log_3 27-\log_{27}\sqrt{3} jest równa
   A. \frac{4}{3}
   B. \frac{1}{2}
   C. \frac{11}{12}
   D. 3


Z własności logarytmów mamy kolejno

(1)   \begin{eqnarray*} \log_3 \sqrt{27}-\log_{27}\sqrt{3}&=&\log_3\left(3^{3/2}\right)-\log_{3^3}\left(3^{1/2}\right)=\nonumber\\ &=&\frac{3}{2}-\frac{1}{3}\cdot\frac{1}{2}=\frac{9}{6}-\frac{1}{6}=\frac{4}{3}.\nonumber \end{eqnarray*}

Zatem poprawną jest odpowiedź A.



Zadanie 2. (0-1)
Funkcja f jest określona wzorem f(x)=\dfrac{x^3-8}{x-2} dla każdej liczby rzeczywistej x\neq 2. Wartość pochodnej tej funkcji dla argumentu x=\dfrac{1}{2} jest równa
   A. \frac{3}{4}
   B. \frac{9}{4}
   C. 3
   D. \frac{54}{8}


Zauważmy, że wyrażenie opisujące funkcję f można skrócić, otrzymamy wtedy (dla x\neq 2)

    \[f(x)=\frac{(x-2)(x^2+2x+4)}{x-2}=x^2+2x+4.\]

To oznacza, że f'(x)=2x+2 i tym samym f'(\frac{1}{2})=3.

Poprawną odpowiedzią jest C.



Zadanie 3. (0-1)
Jeżeli \cos\beta=-\dfrac{1}{3} i \beta\in\left(\pi,\,\dfrac{3}{2}\pi\right), to wartość wyrażenia \sin\left(\beta-\dfrac{1}{3}\pi\right) jest równa:
   A. \frac{-2\sqrt{2}+\sqrt{3}}{6}
   B. \frac{2\sqrt{6}+1}{6}
   C. \frac{2\sqrt{2}+\sqrt{3}}{6}
   D. \frac{1-2\sqrt{6}}{6}


W podanym przedziale liczba \sin\beta jest ujemna, stąd \sin\beta=-\sqrt{1-\left(-\dfrac{1}{3}\right)^2}=-\dfrac{2\sqrt{2}}{3}. Mamy też

(2)   \begin{eqnarray*} \sin\left(\beta-\dfrac{\pi}{3}\right) &=& \sin\beta\cdot\cos\dfrac{\pi}{3}-\cos\beta\cdot\sin\dfrac{\pi}{3}=\nonumber\\ &=&-\dfrac{2\sqrt{2}}{3}\cdot\dfrac{1}{2}-\left(-\dfrac{1}{3}\right)\cdot\dfrac{\sqrt{3}}{2}=\dfrac{\sqrt{3}}{6}-\dfrac{\sqrt{2}}{3}=\nonumber\\ &=&\dfrac{\sqrt{3}-2\sqrt{2}}{6}.\nonumber \end{eqnarray*}

Właściwą odpowiedzią jest więc A.



Zadanie 4. (0-1)
Dane są dwie urny z kulami. W każdej z urn jest siedem kul. W pierwszej urnie są jedna kula biała i sześć kul czarnych, w drugiej urnie są cztery kule białe i trzy kule czarne. Rzucamy jeden raz symetryczną monetą. Jeżeli wypadnie reszka, to losujemy jedną kulę z pierwszej urny, w przeciwnym przypadku – jedną kulę z drugiej urny. Prawdopodobieństwo zdarzenia polegającego na tym, że wylosujemy kulę białą w tym doświadczeniu, jest równe
   A. \frac{5}{14}
   B. \frac{9}{14}
   C. \frac{5}{7}
   D. \frac{6}{7}


Gdy losujemy kulę z pierwszej urny, to szanse na wybranie kuli białej wynoszą \dfrac{1}{7} (bo na łącznie 7 kul tylko jedna jest biała). Podobnie, gdybyśmy losowali jedną kulę z drugiej urny, prawdopodobieństwo otrzymania kuli białej jest równe \dfrac{4}{7}. Ponieważ rzut symetryczną monetą wskazuję każdą z obu urn z prawdopodobieństwem \dfrac{1}{2}, to zgodnie ze wzorem na prawdopodobieństwo całkowite, szukana wartość wynosi

    \[\dfrac{1}{2}\cdot\dfrac{1}{7}+\dfrac{1}{2}\cdot\dfrac{4}{7}=\dfrac{5}{14}.\]

Odpowiedź A.



Zadanie 5. (0-2)
Ciąg (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1 wzorem

    \[a_n=\frac{(7p-1)n^3+5pn-3}{(p+1)n^3+n^2+p},\]

gdzie p jest liczbą rzeczywistą dodatnią.
Oblicz wartość p, dla której granica ciągu (a_n) jest równa \dfrac{4}{3}.

W poniższe kratki wpisz kolejno – od lewej do prawej – pierwszą, drugą oraz trzecią cyfrę po przecinku nieskończonego rozwinięcia dziesiętnego otrzymanego wyniku.

\begin{tikzpicture}[yscale=1.5,scale=0.8] \draw[very thick] (0,0) grid (3,1); \end{tikzpicture}


Zauważmy, że dla n\to\infty i p>0 granica danego ciągu jest równa \dfrac{7p-1}{p+1} (bo takie są odpowiednie współczynniki w liczniku i mianowniku przy najbardziej znaczącym wyrazie – czyli n^3, we wzorze na wyraz ogólny ciągu). Dostajemy więc równanie

    \[\frac{7p-1}{p+1}=\frac{4}{3}\quad\Leftrightarrow\quad 21p-3=4p+4.\]

Jego rozwiązaniem jest p=\dfrac{7}{17}\approx 0,\!41176\ldots To oznacza, że w kratki należało wpisać kolejno cyfry 4, 1 i 1.



Zadanie 6. (0-3)
Wykaż, że dla każdej liczby rzeczywistej x i dla każdej liczby rzeczywistej y takich, że 2x>y, spełniona jest nierówność

    \[7x^3+4x^2y\geqslant y^3+2xy^2-x^3.\]


Przenosimy wszystkie wyrazy na jedną stronę, porządkujemy i grupujemy w nawiasy. Otrzymamy wówczas

(3)   \begin{eqnarray*} &{}&8x^3-y^3+4x^2y-2xy^2 = \nonumber\\ &=&(2x-y)(4x^2+2xy+y^2)+2xy(2x-y) =\nonumber\\ &=& (2x-y)(4x^2+4xy+y^2) = \nonumber\\ &=&(2x-y)(2x+y)^2.\nonumber \end{eqnarray*}

Ostatnie wyrażenie to iloczyn liczby dodatniej (bo 2x>y) i liczby nieujemnej (kwadratu liczby rzeczywistej), jest więc to wartość większa lub równa zero. To kończy dowód.



Zadanie 7. (0-3)
Rozwiąż równanie

    \[|x-3|=2x+11.\]


Rozpatrujemy dwa przypadki:

1^\circ. Dla x\in(-\infty,\,3). Wtedy dane równanie przybiera postać -(x-3)=2x+11, czyli 3x=-8 i tym samym x=-\dfrac{8}{3}<3.

2^\circ. Dla x\in[3,\,\infty). Wtedy mamy x-3=2x+11, a stąd x=-14, co nie należy do rozpatrywanego zakresu.

Ostatecznie uzyskujemy tylko jedno rozwiązanie: x=-\dfrac{8}{3}.



Zadanie 8. (0-3)
Punkt P jest punktem przecięcia przekątnych trapezu ABCD. Długość podstawy CD jest o 2 mniejsza od długości podstawy AB. Promień okręgu opisanego na trójkącie ostrokątnym CPD jest o 3 mniejszy od promienia okręgu opisanego na trójkącie APB. Wykaż, że spełniony jest warunek |DP|^2+|CP|^2-|CD|^2=\dfrac{4\sqrt{2}}{3}\cdot|DP|\cdot |CP|.


Załóżmy, że |CD|=a i okrąg opisany na trójkącie CDP ma długość R. Wtedy |AB|=a+2, zaś okrąg opisany na trójkącie ABP ma promień długości R+3.

\begin{tikzpicture}[scale=0.9] \coordinate[label=below left:$A$] (A) at (200:3); \coordinate[label=below right:$B$] (B) at (340:3); \coordinate[label=above:$C$] (C) at (2,4); \coordinate[label=above:$D$] (D) at (-1.2,4); \coordinate[label=right:$P$] (P) at (intersection of A--C and B--D); \draw (C)--(D) node[above,midway] {$a$};  \draw (A)--(B) node[below,midway] {$a+2$};  \draw[thick] (A)--(C); \draw[thick] (B)--(D); \draw[thick] (A)--(B)--(C)--(D)--cycle; \draw[thin,blue,shift={(P)}] (46:0.6) arc (46:127:0.6) node at (88:0.4) {$\alpha$}; \draw[thin,blue,shift={(P)}] (226:0.6) arc (226:307:0.6) node at (268:0.4) {$\alpha$}; \node at (0.35,3.4) {$R$}; \node at (0.2,0.2) {$R+3$}; \end{tikzpicture}

Oznaczmy też przez \alpha kąty wierzchołkowe w interesujących nas trójkątach. Jest to kąt ostry i z twierdzenia sinusów dla obu trójkątów mamy

    \[2R=\frac{a}{\sin\alpha},\qquad 2(R+3)=\frac{a+2}{\sin\alpha}.\]

Stąd \sin\alpha=\dfrac{a}{2R} oraz \sin\alpha=\dfrac{a+2}{2(R+3)} i mamy zależność 

    \[2R(a+2)=2a(R+3)\quad\Leftrightarrow\quad 2R=3a.\]

Tym samym \sin\alpha=\dfrac{a}{2R}=\dfrac{1}{3} i dalej \cos\alpha=\sqrt{1-\sin^2\alpha}=\dfrac{2\sqrt{2}}{3}.

Jeśli napiszemy teraz twierdzenie cosinusów dla trójkąta CDP, to otrzymamy żądaną zależność:

    \[|CD|^2=|DP|^2+|CP|^2-2\cdot |DP|\cdot|CP|\cdot\frac{2\sqrt{2}}{3}.\]

To kończy dowód.



Zadanie 9. (0-4)
Reszta z dzielenia wielomianu W(x)=4x^3-6x^2-(5m+1)x-2m przez dwumian x+2 jest równa -30. Oblicz m i dla wyznaczonej wartości m rozwiąż nierówność W(x)\geqslant 0.


Z twierdzenia Bezouta, mamy natychmiast W(-2)=-30, czyli -32-24+10m+2-2m=-30, a stąd m=3.

Wielomian W(x) ma więc postać W(x)=4x^3-6x^2-16x-6. Nierudno zauważyć, że jednym z pierwiastków tego wielomianu jest liczba x=-1. To prowadzi do rozkładu na czynniki

    \[W(x)=2(x+1)(2x^2-5x-3).\]

Otrzymany trójmian kwadratowy ma dwa pierwiastki rzeczywiste: \Delta=(-5)^2-4\cdot2\cdot(-3)=49, więc x_1=-\dfrac{1}{2} oraz x_2=3. Stąd

    \[W(x)=4(x+1)\left(x+\frac{1}{2}\right)(x-3).\]

Rozwiązanie nierówności W(x)\geqslant 0 najprościej teraz przeprowadzić na osi liczbowej.

\begin{tikzpicture}[scale=1.2,yscale=1] \draw[thin,fill=red!20] (-1,0) rectangle (0,0.4); \draw[red!20,thin,fill=red!20] (3,0) rectangle (3.9,0.4); \draw (3,0)--(3,0.4)--(3.9,0.4) ; \draw[thick,blue,domain=-1.7:3.3, smooth, variable=\x,yscale=0.2] plot ({\x},{(\x+1)*(\x+0)*(\x-3)}); \draw[very thick,->] (-1.8,0)--(4,0) node[below] {$x$}; \foreach \x/\w in {-1/{-1},0/{-\frac{1}{2}},3/3} {  \draw (\x,0)--(\x,-0.06) node[below] {$\w$};    \draw[fill=black] (\x,0) circle (2pt);} \end{tikzpicture}



Zadanie 10. (0-4)
Ciąg (a_n), określony dla każdej liczby naturalnej n\geqslant 1, jest geometryczny i ma wszystkie wyrazy dodatnie. Ponadto a_1=675 i a_{22}=\dfrac{5}{4}a_{23}+\dfrac{1}{5}a_{21}.
Ciąg (b_n), określony dla każdej liczby naturalnej n\geqslant 1, jest arytmetyczny. Suma wszystkich wyrazów ciągu (a_n) jest równa sumie dwudziestu pięciu początkowych kolejnych wyrazów ciągu (b_n). Ponadto a_3=b_4. Oblicz b_1.


Każdy wyraz ciągu geometrycznego (a_n) możemy zapisać jako a_n=a_1\cdot q^{n-1} dla pewnej liczby q>0 (to wynika stąd, że ciąg ten ma wszystkie wyrazy dodatnie). Mamy zatem równość

    \[a_1\cdot q^{21}=\frac{5}{4}\cdot q^{22}+\frac{1}{5}\cdot q^{20}.\]

Dzieląc ją obustronnie przez liczbę \dfrac{a_1q^{20}}{20}, otrzymamy 20q=25q^2+4, a stąd (5q-2)^2=0. To prowadzi do wyniku q=\dfrac{2}{5}.

Suma S wszystkich wyrazów ciągu geometrycznego (a_n) wynosi

    \[S=\frac{a_1}{1-q}=\frac{675}{1-\frac{2}{5}}=1125.\]

Mamy więc b_1+b_2+\ldots+b_{25}=1125. Stąd, ponieważ ciąg (b_n) jest arytmetyczny, możemy wnioskować, że środkowy składnik tej sumy – czyli wyraz b_{13} – jest równy \dfrac{1125}{25}=45. Dodatkowo wiemy, że b_4=a_3=a_1\cdot q^2=675\cdot \dfrac{2}{5}\cdot\dfrac{2}{5}=108.

Mamy więc układ zależności dotyczący ciągu (b_n). Mianowicie: b_{13}=45 i b_4=108. Jeśli oznaczymy przez r różnicę w tym postępie arytmetycznym, to uzyskamy równania

    \[\left\{\begin{array}{l}b_{13}=b_1+12r=45\\b_4=b_1+3r=108\end{array}\right..\]

Rozwiązaniem tego układu równań jest r=-7 i b_1=129. To kończy rozwiązanie zadania.



Zadanie 11. (0-4)
Rozwiąż równanie \sin x + \sin 2x + \sin 3x = 0 w przedziale [0,\,\pi].


Wykorzystamy wzory trygonometryczne na sinus sumy argumentów oraz na sinus i cosinus podwojonego argumentu: \sin(a+b)=\sin a\cdot \cos b+\cos a\cdot \sin b oraz \sin 2x=2\sin x\cos x i \cos 2x=2\cos^2x-1 dla wszelkich liczb a,b,x rzeczywistych. Mamy

    \[\sin 3x=\sin(2x+x)=\sin 2x\cdot \cos x+\cos 2x\cdot \sin x.\]

To oznacza, że

    \[\sin x+\sin 2x+\sin 3x=\sin x(1+2\cos x+2\cos^2x+2\cos^2 x-1).\]

Dane równanie przyjmuje więc postać

    \[\sin x\cdot 2\cos x(2\cos x+1)=0.\]

To oznacza, że mamy alternatywę trzech możliwości: \sin x=0 lub \cos x=0 lub \cos x=-\dfrac{1}{2}. Rozwiązania tych równań na przedziale [0,\,\pi] są cztery: x=0 lub x=\pi, x=\dfrac{\pi}{2}, x=\dfrac{2\pi}{3}. Liczby te stanowią odpowiedź do zadania.



Zadanie 12. (0-5)
Wyznacz wszystkie wartości parametru m, dla których równanie

    \[x^2-(m+1)x+m=0\]

ma dwa różne rozwiązania rzeczywiste x_1 oraz x_2, spełniające warunki:

    \[x_1\neq 0,\quad x_2\neq 0\quad\text{oraz}\quad \frac{1}{x_1}+\frac{1}{x_2}+2=\frac{1}{x_1^2}+\frac{1}{x_2^2}.\]


Aby równanie miało dwa różne rozwiązania, musi być \Delta>0. Stąd (m+1)^2-4m=(m-1)^2>0, czyli m\neq 1. Rozwiązania x_1 i x_2 będą różne od zera, gdy liczba zero nie będzie spełniała danego równania kwadratowego, stąd m\neq 0.

Przekształćmy teraz zależność wiążącą oba pierwiastki tak, aby móc użyć wzorów Viete’a. Równanie

    \[\frac{1}{x_1}+\frac{1}{x_2}+2=\frac{1}{x_1^2}+\frac{1}{x_2^2}\]

jest równoważne równości

    \[\frac{x_1+x_2}{x_1x_2}+2=\frac{(x_1+x_2)^2-2x_1x_2}{(x_1x_2)^2}.\]

Podstawiając teraz x_1+x_2=m+1 oraz x_1x_2=m, uzyskamy

    \[\frac{m+1}{m}+2=\frac{(m+1)^2-2m}{m^2}\quad\Leftrightarrow\quad m^2+m+2m^2=m^2+1,\]

stąd 2m^2+m-1=0 i obliczając wyróżnik tej zależności kwadratowej \Delta_m=9, dostajemy m_1=-1 oraz m_2=\dfrac{1}{2}. Obie te liczby spełniają wcześniej wyprowadzone warunki, stanowią więc rozwiązanie naszego zadania.



Zadanie 13. (0-5)
Dany jest graniastosłup prosty ABCDEFGH o podstawie prostokątnej ABCD. Przekątne AH i AF ścian bocznych tworzą kąt ostry o mierze \alpha takiej, że \sin\alpha=\dfrac{12}{13} (zobacz rysunek). Pole trójkąta AFH jest równe 26,\!4. Oblicz wysokość h tego graniastosłupa.

\begin{tikzpicture}[scale=1.5] \draw[fill=blue!20,blue!20] (0,3.5)--(2,0)--(3,4.9); \draw[thick,dashed] (0,0)--(2,0)--(3,1.4)--(1,1.4)--cycle (1,1.4)--(1,4.9); \draw[thick] (0,0)--(2,0)--(3,1.4); \draw[thick,shift={(0,3.5)}] (0,0)--(2,0)--(3,1.4)--(1,1.4)--cycle; \draw[thick] (0,0)--(0,3.5) (2,0)--(2,3.5) (3,1.4)--(3,4.9); \draw[blue,thick] (0,3.5)--(2,0)--(3,4.9); \foreach \x/\y/\g/\w in {0/0/{below left}/D,2/0/{below right}/A,3/1.4/right/B,1/1.4/left/C, 0/3.5/{left}/H,2/3.5/{below right}/E,3/4.9/above/F,1/4.9/above/G }   \node[\g] at (\x,\y) {$\w$}; \draw[thick,blue,shift={(2,0)}] (77:0.7) arc (77:120.5:0.7) node[black] at (99:0.55) {$\alpha$};  \node[left] at (0,1.75) {$h$}; \end{tikzpicture}


Niech podstawa graniastosłupa ma wymiary |AD|=a oraz |AB|=b. Wtedy z twierdzenia Pitagorasa wynika, że trójkąt AFH będący wskazanym przekrojem, ma boki długości odpowiednio

    \[|AH|=\sqrt{a^2+h^2},\,\,|AF|=\sqrt{b^2+h^2},\,\,|HF|=\sqrt{a^2+b^2}.\]

\begin{tikzpicture}[scale=1.5] \draw (0,0)--(1,-4) node[left,midway] {$\sqrt{a^2+h^2}$}; \draw (3,0)--(1,-4) node[right,midway] {$\sqrt{b^2+h^2}$}; \draw (0,0)--(3,0) node[above,midway] {$\sqrt{a^2+b^2}$}; \draw[blue,thick,fill=blue!20] (0,0)--(3,0)--(1,-4)--cycle; \foreach \x/\y/\g/\w in {0/0/{above left}/H,3/0/{above right}/F,1/-4/below/A}   \node[\g] at (\x,\y) {$\w$}; \draw[thick,blue,shift={(1,-4)}] (64:0.6) arc (64:105:0.6) node[black] at (84:0.4) {$\alpha$};  \end{tikzpicture}

Ponieważ kąt \alpha jest ostry, to \cos\alpha=\sqrt{1-\sin^2\alpha}=\dfrac{5}{13}. Z twierdzenia cosinusów mamy więc

    \[|HF|^2=|AH|^2+|AF|^2-2\cdot|AH|\cdot |AF|\cdot\cos\alpha,\]

czyli

    \[a^2+b^2=a^2+h^2+b^2+h^2-2\cdot|AH|\cdot |AF|\cdot\cos\alpha,\]

a stąd h^2=|AH|\cdot |AF|\cdot\dfrac{5}{13}.

Zauważmy teraz, że znając pole S=26,\!4 trójkąta AHF możemy napisać S=\dfrac{1}{2}\cdot|AH|\cdot |AF|\cdot\sin\alpha, czyli

    \[|AH|\cdot |AF|=\frac{2S}{\sin\alpha}=\frac{52,\!8}{\frac{12}{13}}=52,\!8\cdot \frac{13}{12}.\]

Podstawiając ten iloczyn do poprzedniej zależności na h^2 otrzymamy ostatecznie h^2=52,\!8\cdot \dfrac{13}{12}\cdot\dfrac{5}{13}=22 i tym samym h=\sqrt{22}.



Zadanie 14. (0-6)
Punkt A=(-3,2) jest wierzchołkiem trójkąta równoramiennego ABC, w którym |AC|=|BC|. Pole tego trójkąta jest równe 15. Bok BC zawarty jest w prostej o równaniu y=x-1. Oblicz współrzędne wierzchołków B i C tego trójkąta.


Jak niemal każde zadanie z geometrii najlepiej rozpocząć od wykonania w miarę dokładnego rysunku.

\begin{tikzpicture}[scale=0.5] \draw[black!30] (-10.5,-9.5) grid (10.5,9.5); \draw[ultra thick,->] (-10.5,0)--(10.5,0) node[below] {$x$}; \draw[very thick,->] (0,-9.5)--(0,9.5) node[left] {$y$}; \coordinate[label=above:$A$] (A) at (-3,2); \coordinate[label=below right:$C$] (C) at (4,3); \coordinate[label=below right:$B_1$] (B1) at (9,8); \coordinate[label=left:$B_2$] (B2) at (-1,-2); \draw[blue] (-8,-9)--(10.5,9.5) node[below,sloped,near start] {$y=x-1$}; \draw[fill=black] (A) circle (0.09cm); \draw[fill=black] (C) circle (0.09cm); \draw[fill=black] (B1) circle (0.09cm); \draw[fill=black] (B2) circle (0.09cm); \draw[red,thick] (A)--(B1)--(C)--cycle; \draw[green!50!black,thick] (A)--(B2)--(C)--cycle; \end{tikzpicture}

Ponieważ punkty B i C leżą na prostej y=x-1, to możemy przyjąć, że B=(b,b-1) i C=(c,c-1) dla pewnych liczb b oraz c. Możemy obliczyć długość odcinka BC korzystając z informacji o polu naszego trójkąta. Istotnie, traktując bok BC jako podstawę, wysokość będzie odległością punktu A od danej prostej x-y-1=0. Ma ona wartość

    \[h=\frac{|-3-2-1|}{\sqrt{1^2+(-1)^2}}=\frac{6}{\sqrt{2}}=3\sqrt{2}.\]

Stąd \dfrac{1}{2}\cdot h\cdot |BC|=15, czyli |BC|=\dfrac{30}{3\sqrt{2}}=5\sqrt{2}.

Możemy teraz napisać

    \[25\cdot 2=|BC|^2=(b-c)^2+(b-1-c+1)^2=2(b-c)^2,\]

a stąd (b-c)^2=25. To daje nam dwie możliwości: b=5+c albo b=-5+c.

Pozostaje jeszcze sprawdzić, kiedy otrzymamy trójkąt równoramienny z równością |AC|=|BC|=5\sqrt{2}. Mamy

    \[|AC|=\sqrt{(c+3)^2+(c-1-2)^2}=\sqrt{2c^2+18},\]

stąd 2c^2+18=50 lub w wersji uproszczonej c^2=16. Rozwiązując to równanie kwadratowe uzyskamy możliwe wartości c=-4 lub c=4. Mamy więc C=(-4,-5) lub C=(4,3). Wtedy, zgodnie z wcześniejszymi obliczeniami B=(1,0) lub B=(-9,-10) albo odpowiednio B=(9,8) lub B=(-1,-2). Są zatem cztery trójkąty ABC, które spełniają warunki zadania, ale tylko dwa możliwe położenia wierzchołka C.

 

Zadanie 15. (0-7)
Rozpatrujemy wszystkie trójkąty równoramienne o obwodzie równym 18.

a) Wykaż, że pole P każdego z tych trójkątów, jako funkcja długości b ramienia, wyraża się wzorem P(b)=(18-2b)\sqrt{18b-81}.

b) Wyznacz dziedzinę funkcji P.

c) Oblicz długości boków tego z rozpatrywanych trójkątów, który ma największe pole.


Niech a>0 będzie długością podstawy w takim trójkącie, zaś h długością wysokości opuszczonej na tę podstawę. Mamy a+2b=18 i stąd a=18-2b, zatem 18-2b>0, co daje b<9. Z drugiej strony ponieważ w trójkącie suma długości dwóch boków musi być większa od trzeciego, zachodzi nierówność 2b>a=18-2b, a stąd b>\dfrac{9}{2}.

\begin{tikzpicture}[scale=1.4] \draw[thick](0,0)--(2,0)--(1,3)--cycle; \draw[thick,blue] (1,3)--(1,0); \node[left,blue] at (1,1.2) {$h$}; \node[below] at (1,0) {$a$}; \draw (0,0)--(1,3) node[left,midway] {$b$}; \draw (2,0)--(1,3) node[right,midway] {$b$}; \end{tikzpicture}

a) Z twierdzenia Pitagorasa mamy h^2=b^2-\left(\dfrac{a}{2}\right)^2, czyli h^2=b^2-(9-b)^2=18b-81. Dlatego pole P(b) takiego trójkąta wynosi

    \[P(b)=\frac{1}{2}\cdot ah=(9-b)\sqrt{18b-81}.\]

b) Dziedzina tej funkcji wynika z początkowych rozważań: geometryczny sens jest zachowany przy b\in\left(\dfrac{9}{2},\,9\right).

c) Aby zmaksymalizować wartość dodatniej funkcji P(b) wystarczy zbadać funkcję f(b)=(P(b))^2=9(b-9)^2(2b-9) dla \dfrac{9}{2}<b<9. Mamy

    \[f'(b)=18(b-9)(2b-9)+18(b-9)^2=54(b-9)(b-6).\]

Wynika stąd, że pochodna f'(b) jest ujemna wyłącznie przy b\in(6,9). Zatem dla b=6 pochodna ta zmienia znak z dodatniego na ujemny i w punkcie tym faktycznie badana funkcja osiąga maksimum. Maksymalna jest też wówczas wartość funkcji P(b). Największe pole spośród badanych trójkątów ma więc trójkąt równoboczny o boku długości a=b=6.



Zadania maturalne z matematyki – profil matematyczno-fizyczny (maj 1988)

Treści zadań pochodzą z czasopisma Matematyka nr 5/1988.

Zadanie 1.
Współczynniki a, b, c równania ax^2+bx+c=0 są kolejnymi wyrazami ciągu arytmetycznego, a ich suma wynosi 24. Jednym z pierwiastków równania jest liczba x_1=-3. Wyznaczyć drug pierwiastek tego równania.


x_2=-5.



Zadanie 2.
Dla jakich wartości parametru m równanie

    \[x^2-(2m-1)x+m^2-4=0\]

ma dwa różne pierwiastki rzeczywiste, oba mniejsze od 4?


m\in(-\infty,-4)\cup(-4,\frac{17}{4}).



Zadanie 3.
Dla jakiego parametru p równanie

    \[(3p+2)x^2+(p-1)x+4p+3=0\]

jest równaniem kwadratowym, mającym pierwiastki x_1 i x_2 spełniające warunek x_1<-1<x_2<1?


p\in(-1,-\frac{2}{3}).



Zadanie 4.
Dane jest równanie

    \[(2\sin\alpha-1)x^2-2x+\sin\alpha=0,\qquad\text{gdzie}\,\,\alpha\in\left[-\frac{\pi}{2},\frac{\pi}{2}\right].\]

Dla jakich wartości parametru \alpha: a) równanie ma pierwiastki rzeczywiste? b) suma odwrotności pierwiastków jest równa 4\cos \alpha?


a) \alpha\in\left[-\frac{\pi}{6},\,\frac{\pi}{2}\right] i \alpha\neq\frac{\pi}{6}.
b) \alpha = \frac{\pi}{4}.



Zadanie 5.
Dla jakich wartości parametru \alpha z przedziału [0,\pi] równanie o niewiadomej x

    \[(2\cos^2\alpha-1)x^2-2x\cos\alpha+1=0\]

ma dwa różne pierwiastki rzeczywiste.


\alpha\in\left(0,\frac{\pi}{4}\right)\cup \left(\frac{\pi}{4},\frac{3\pi}{4}\right)\cup\left(\frac{3\pi}{4},\pi\right).



Stereometria – przykłady z rozwiązaniami

Zadanie 1. (0-5)
W ostrosłupie prawidłowym trójkątnym krawędź podstawy ma długość a. Ściany boczne są trójkątami ostrokątnymi. Miara kąta między sąsiednimi ścianami bocznymi jest równa 2\alpha. Wyznacz objętość tego ostrosłupa.

♦ matura – poziom rozszerzony, maj 2010.


Wykonajmy szkic sytuacyjny na modelu ostrosłupa ABCD. Należy pamiętać, że kąt pomiędzy przecinającymi się płaszczyznami zaznacza się na przekroju płaszczyzną prostopadłą do wspólnej krawędzi tych płaszczyzn. W naszym przypadku niech K będzie odpowiednim punktem na krawędzi BD tak, aby płaszczyzna AKC była do tej krawędzi prostopadła. Wtedy \angle AKC=2\alpha. Niech też |DP|=H będzie wysokością tego ostrosłupa, gdzie P jest punktem z trójkąta równobocznego ABC.

\begin{tikzpicture}[scale=1.5,rotate=4] \coordinate[label=below:$A$] (A) at (0,0); \coordinate[label=right:$B$] (B) at (2,1); \coordinate[label=left:$C$] (C) at (-0.7,1.5); \coordinate[label=above:$D$] (D) at (0.7,4); \coordinate[label=right:$K$] (K) at ($(B)!0.3!(D)$); \coordinate[label=above right:$P$] (P) at ($0.333*(A)+0.333*(B)+0.333*(C)$); \draw[thick] (C)--(A)--(B) (A)--(D)--(B) (D)--(C); \draw[thick,dashed] (B)--(C); \foreach \p in {A,B,C,D,K,P}    \draw[fill=black] (\p) circle (0.8pt); \node[scale=0.65,blue] at ($(K)+(208:0.4)$) {$2\alpha$}; \draw[blue] (K)--(A); \draw[blue,dashed] (K)--(C); \draw (B)--(A) node[below,midway] {$a$}; \draw (C)--(A) node[left,midway] {$a$}; \draw[thick,red] (D)--(P); \end{tikzpicture}

Oznaczmy przez x długość odcinka AK, jest to jednocześnie wysokość ściany bocznej ABD. Rozważmy trójkąt AKC podzielony wysokością opuszczoną na bok AC.

\begin{tikzpicture} \draw[thick] (0,0)--(2,3)--(4,0)--cycle; \draw[thick,blue] (0,0)--(2,3)--(4,0); \node[above left] at (1,1.5) {$x$}; \node[below] at (1,0) {$\frac{a}{2}$}; \node[below left] at (0,0) {$C$}; \node[below right] at (4,0) {$A$}; \node[above] at (2,3) {$K$}; \draw[red] (2,3)--(2,0); \node[scale=0.8] at ($(2,3)+(252:0.4)$) {$\alpha$}; \end{tikzpicture}

Mamy wtedy

    \[\frac{\frac{a}{2}}{x}=\sin \alpha\quad\Leftrightarrow\quad x=\frac{a}{2\sin\alpha}.\]

Niech b będzie długością krawędzi bocznych naszego ostrosłupa, zaś h niech będzie długością wysokości tych ścian, opuszczonych z wierzchołka D.

\begin{tikzpicture} \draw[thick] (0,0)--(2,5)--(4,0)--cycle; \node[above left] at (1,2.5) {$b$}; \node[below] at (1,0) {$\frac{a}{2}$}; \node[below left] at (0,0) {$A$}; \node[below right] at (4,0) {$B$}; \node[above] at (2,5) {$D$}; \draw[red] (2,5)--(2,0) node[right,midway] {$h$}; \end{tikzpicture}

Z twierdzenia Pitagorasa mamy

    \[h^2=b^2-\left(\frac{a}{2}\right)^2,\]

zaś z równości pól liczonych raz dla wysokości x, a raz dla wysokości h, dostajemy \dfrac{1}{2}\cdot |BD|\cdot x=\dfrac{1}{2}\cdot |AB|\cdot h, czyli bx=ah. Podstawiając obliczone wartości x i h, możemy napisać

    \[\frac{ab}{2\sin\alpha}=a\sqrt{b^2-\frac{a^2}{4}}.\]

Dostajemy stąd \dfrac{a^2}{4}=b^2\left(1-\dfrac{1}{4\sin^2\alpha}\right), czyli

    \[b=\frac{a\sin\alpha}{\sqrt{4\sin^2\alpha-1}}.\]

Na koniec zauważmy, że podstawa P wysokości ostrosłupa znajduje się w środku ciężkości trójkąta równobocznego ABC. Stąd H^2=|BD|^2-|BP|^2, czyli

    \[H^2=b^2-\left(\frac{2}{3}\cdot \frac{\sqrt{3}}{2}a\right)^2=\frac{a^2\sin^2\alpha}{4\sin^2\alpha-1}-\frac{a^2}{9}=\frac{5\sin^2\alpha+1}{9\left(4\sin^2\alpha-1\right)}a^2.\]

Mamy więc odpowiedź

    \[V=\frac{1}{3}\cdot\frac{\sqrt{3}}{4}a^2\cdot H=\frac{\sqrt{15\sin^2\alpha+3}}{36\sqrt{4\sin^2\alpha-1}}\,a^3.\]

Warto jeszcze zaznaczyć, jakie warunki powinny spełniać podane wielkości, aby opisana w zadaniu sytuacja miała sens. Musi być oczywiście 4\sin^2\alpha-1>0, a że \alpha\in\left(0,\frac{\pi}{2}\right), to \sin\alpha>\dfrac{1}{2}, czyli \alpha\in\left(\dfrac{\pi}{6},\,\dfrac{\pi}{2}\right).

 

Zadanie 2. (0-8)
W trójkącie ABC dane są: |AC|=8, |BC|=3, \angle ACB=60^\circ. Oblicz objętość i pole powierzchni całkowitej bryły powstałej po obrocie trójkąta ABC dookoła boku BC.

♦ matura – poziom rozszerzony, maj 2003.


Wykonajmy szkic sytuacyjny danych z zadania. Warto przy tym ustawić oś obrotu (czyli bok BC trójkąta) w pozycji pionowej, aby lepiej wyobrazić sobie powstałą po tej operacji bryłę.

\begin{tikzpicture} \coordinate[label=above:$C$] (C) at (0,0); \coordinate[label=below:$A$] (A) at (210:4); \coordinate[label=below:$A'$] (Ap) at (330:4); \coordinate[label=above left:$B$] (B) at (270:1.5); \draw[red] (B)--(270:2) node[right,midway] {$1$}; \draw[thick] (A)--(B)--(C)--cycle; \draw[thick,dashed,blue] (B)--(Ap)--(C); \draw (A)--(C) node[above left,midway] {$8$}; \node[right] at (0,-0.8) {$3$}; \node[scale=0.6,below] at (220:0.3) {$60^\circ$};  \draw[thin,red] (A)--(Ap); \end{tikzpicture}

Zauważmy, że w trójkącie ABC kąt przy wierzchołku C jest rozwarty. Można to potwierdzić np. twierdzeniem kosinusów ale zdecydowanie łatwiej zauważyć, że gdyby bok BC byłby nieco dłuższy i miałby długość 4, to wtedy kąt \angle ABC byłby prosty (dany trójkąt byłby połówką trójkąta równobocznego). Przez A' oznaczmy teraz punkt symetryczny do A względem osi obrotu BC. Uzyskana bryła to stożek o przekroju osiowym AA'C z ,,wydrążonym” w podstawie współosiowym stożkiem o przekroju AA'B. Na podstawie tej obserwacji będziemy obliczać objętość V tej bryły.

Długość odcinka AA' to podwojona wysokość trójkąta równobocznego o boku długości 8, czyli |AA'|=2\cdot\dfrac{8\sqrt{3}}{2}=8\sqrt{3}. Stąd

    \[V=\pi \cdot\left(\frac{|AA'|}{2}\right)^2\cdot 4-\pi \cdot\left(\frac{|AA'|}{2}\right)^2\cdot 1=\pi \cdot\left(4\sqrt{3}\right)^2\cdot 3=144\pi.\]

Z kolei powierzchnia całkowita S to jakby suma powierzchni bocznych wskazanych wyżej dwóch stożków. Tworząca l_1 pierwszego wynosi l_1=|AC|=8, zaś tworząca stożka drugiego ma długość l_2=|AB|, którą obliczymy z twierdzenia cosinusów:

    \[|AB|^2=8^2+3^2-2\cdot 8\cdot 3\cdot\cos 60^\circ=64+9-24=49,\]

stąd |AB|=7.

Mamy więc

    \[S=\pi\frac{|AA'|}{2}\cdot l_1+\pi\frac{|AA'|}{2}\cdot l_2=\pi\cdot 4\sqrt{3}\cdot (8+7)=60\pi\sqrt{3}.\]

 

Zadanie 3. (0-4)
Wybierz dwie dowolne przekątne sześcianu i oblicz cosinus kąta między nimi. Sporządź odpowiedni rysunek i zaznacz na nim kąt, którego cosinus obliczasz.

♦ matura próbna – poziom rozszerzony, styczeń 2003.


Zgodnie z poleceniem, wykonajmy rysunek. Rozważamy sześcian ABCDA_1B_1C_1D_1, niech K będzie punktem wspólnym przekątnych A_1C i BD_1.

\begin{tikzpicture}[scale=0.9] \coordinate[label=below left:$A$] (A) at (0,0); \coordinate[label=below right:$B$] (B) at (3,0); \coordinate[label=above left:$A_1$] (A1) at (0,3); \coordinate[label=below right:$B_1$] (B1) at (3,3); \coordinate[label=below:$D$] (D) at (1.5,1); \coordinate[label=below right:$C$] (C) at (4.5,1); \coordinate[label=above left:$D_1$] (D1) at (1.5,4); \coordinate[label=above right:$C_1$] (C1) at (4.5,4); \coordinate[label=below left:$K$] (K) at (intersection of B--D1 and A1--C); \draw[thick] (A)--(B)--(B1)--(A1)--cycle (A1)--(B1)--(C1)--(D1)--cycle (B)--(C)--(C1); \draw[thick,dashed] (A)--(D)--(C) (D)--(D1); \draw[very thick, red] (D1)--(B) (A1)--(C); \foreach \p in {A,B,C,D,A1,B1,C1,D1,K}   \draw[fill=black] (\p) circle (1.5pt); \end{tikzpicture}

Oznaczmy przez a długość krawędzi sześcianu. Wtedy oczywiście każda z jego przekątnych będzie miała długość a\sqrt{3}. Nasz kąt możemy zaznaczyć na dodatkowym płaskim rysunku. Jest to kąt pomiędzy przekątnymi prostokąta A_1BCD_1, którego boki wynoszą |A_1B|=a\sqrt{2} oraz |BC|=a.

\begin{tikzpicture}[scale=2.5] \coordinate[label=below left:$A_1$] (A1) at (0,0); \coordinate[label=below right:$B$] (B) at (1.414,0); \coordinate[label=above right:$C$] (C) at (1.414,1); \coordinate[label=above left:$D_1$] (D1) at (0,1); \coordinate[label=below:$K$] (K) at (intersection of B--D1 and A1--C); \foreach \p in {A1,B,C,D1,K}   \draw[fill=black] (\p) circle (0.4pt); \draw[thick] (A1)--(B)--(C)--(D1)--cycle; \draw[thick,red] (A1)--(C) (B)--(D1); \node[below] at (0.71,0) {$a\sqrt{2}$}; \node[left] at (0,0.5) {$a$}; \node[right,red] at (0.77,0.5) {$\alpha$}; \end{tikzpicture}

Niech \alpha będzie kątem ostrym pomiędzy wybranymi przekątnymi. Najłatwiej użyć jest twierdzenia cosinusów. Mamy

    \[|BC|^2=|BK|^2+|CK|^2-2\cdot|BK|\cdot|CK|\cos\alpha,\]

podstawiając znane długości poszczególnych odcinków, dostaniemy \cos\alpha=\dfrac{a^2-\frac{3}{4}a^2-\frac{3}{4}a^2}{-2\cdot\frac{\sqrt{3}}{2}a\cdot\frac{\sqrt{3}}{2}a}=\dfrac{\frac{1}{2}a^2}{\frac{3}{2}a^2}=\dfrac{1}{3}. To kończy rozwiązanie.

 

Zadanie 4. (0-4)
Graniastosłup prawidłowy czworokątny o krawędzi podstawy a i dwa razy krótszej wysokości przecięto płaszczyzną przechodzącą przez przekątną podstawy i nachyloną do płaszczyzny podstawy pod kątem 60^\circ. Zaznacz ten kąt na rysunku oraz oblicz pole otrzymanego przekroju, wynik przedstaw w najprostszej postaci.

♦ matura próbna ,,Operon” – poziom rozszerzony, listopad 2019.


Sytuację przedstawia rysunek. Trzeba oczywiście sprawdzić, czy przy podanych wymiarach graniastosłupa opisany przekrój przecina obie podstawy bryły, czy też przecina jedną z krawędzi bocznych. Jeślj przyjmiemy oznaczenia wierzchołków graniastosłupa jak na rysunku poniżej i założymy, że interesujący nas przekrój zawiera przekątną BD podstawy, to gdyby przekrój ten przechodził przez wierzchołek C_1, to kąt nachylenia przekroju do płaszczyzny podstawy wynosiłby \alpha i wówczas \text{tg}\alpha=\dfrac{|CC_1|}{|TC_1|}, gdzie T jest środkiem kwadratowej podstawy ABCD. Stąd \text{tg}\alpha=\dfrac{a/2}{a\sqrt{2}/2}=\dfrac{\sqrt{2}}{2}<\sqrt{3}=\text{tg} 60^\circ. Wynika stąd, że rozważany w zadaniu przekrój jest trapezem, którego podstawy zawierają się w podstawach graniastosłupa.

\begin{tikzpicture}[scale=1.3] \coordinate[label=below left:$A$] (A) at (0,0); \coordinate[label=below right:$B$] (B) at (3,0); \coordinate[label=above left:$A_1$] (A1) at (0,2); \coordinate[label=below right:$B_1$] (B1) at (3,2); \coordinate[label=below:$D$] (D) at (1.5,1); \coordinate[label=below right:$C$] (C) at (4.5,1); \coordinate[label=above left:$D_1$] (D1) at (1.5,3); \coordinate[label=right:$C_1$] (C1) at (4.5,3); \coordinate[label=above:$P$] (P) at ($(D1)!0.6!(C1)$); \coordinate[label=below right:$Q$] (Q) at ($(B1)!0.6!(C1)$); \coordinate[label=left:$V$] (V) at ($(P)!0.5!(Q)$); \coordinate[label=below left:$T$] (T) at ($(B)!0.5!(D)$); \coordinate[label=left:$W$] (W) at (intersection of C--C1 and T--V); \draw[red,thick,fill=red!10] (B)--(Q)--(P)--(D)--cycle; \draw[thick] (A)--(B)--(B1)--(A1)--cycle (A1)--(B1)--(C1)--(D1)--cycle (B)--(C)--(C1); \draw[thick,dashed] (A)--(D)--(C) (D)--(D1); \node[above] at (B1) {$B_1$}; \node[below left] at (V) {$V$}; \draw[thick,blue] (C)--(T)--($(P)!0.5!(Q)$) (V)--(W)--(C1) (V)--(C1); \foreach \p in {A,B,C,D,A1,B1,C1,D1,P,Q,T,V,W}   \draw[fill=black] (\p) circle (1.1pt); \node[scale=0.8,blue] at ($(T)+(30:0.42)$) {$60^\circ$}; \draw (A)--(B) node[below,midway] {$a$}; \draw (C)--(B) node[below right,midway] {$a$}; \draw (C)--(C1) node[right,midway] {$\frac{a}{2}$}; \end{tikzpicture}

Niech W będzie punktem przecięcia prostej TV z przedłużeniem krawędzi bocznej CC_1, przy czym V jest środkiem podstawy PQ trapezu będącego rozważanym przekrojem. Trójkąt prostokątny CTW jest połówką trójkąta równobocznego i dodatkowo |CT|=\dfrac{a\sqrt{2}}{2}, zatem |CW|=\dfrac{a\sqrt{6}}{2} i |TW|=2|CT|=a\sqrt{2}. Trójkątem ,,ekierkowym” jest także trójkąt C_1VW oraz |C_1W|=\dfrac{a(\sqrt{6}-1)}{2}, a stąd |WV|=\dfrac{a(\sqrt{6}-1)}{\sqrt{3}} i tym samym

    \[|TV|=|TW|-|WV|=\frac{a\sqrt{3}}{3}.\]

Mamy też |PQ|=|WV|, więc możemy już obliczyć pole S naszego przekroju. Mamy

    \[S=\frac{|BD|+|PQ|}{2}\cdot|TV|=\frac{a\sqrt{2}+\frac{a(\sqrt{6}-1)}{\sqrt{3}}}{2}\cdot \frac{a\sqrt{3}}{3}=\frac{a^2(2\sqrt{6}-1)}{6}.\]

 

Zadanie 5. (0-7)
Powierzchnia całkowita graniastosłupa prawidłowego sześciokątnego jest równa S\sqrt{3}. Wyznacz największą z możliwych objętość tego graniastosłupa, wynik zapisz w najprostszej postaci.

♦ matura próbna ,,Operon” – poziom rozszerzony, listopad 2019.


Niech a,h>0 będą odpowiednio długością podstawy i wysokością danego graniastosłupa. Sześciokąt foremny o boku długości a składa się z sześciu trójkątów równobocznych o boku a, stąd

    \[S\sqrt{3}=12\cdot\frac{\sqrt{3}}{4}a^2+6ah=3\sqrt{3}a^2+6ah.\]

\begin{tikzpicture}[yscale=0.4] \draw[thick] (20:2)--(80:2)--(140:2)--(200:2)--(260:2)--(320:2)--(20:2) node[right,midway] {$a$}; \draw (260:2)--(320:2) node[below,midway] {$a$}; \draw (260:2)--(200:2) node[below,midway] {$a$}; \draw[thick,{shift={(0,10)}}] (20:2)--(80:2)--(140:2)--(200:2)--(260:2)--(320:2)--(20:2); \draw[dashed,thick]  (140:2)--+(0,10) (80:2)--+(0,10);  \draw[thick]  (200:2)--+(0,10) (260:2)--+(0,10) (320:2)--+(0,10) (20:2)--+(0,10) node[right,midway] {$h$};  \node[right] at (3,5) {$12\cdot\frac{\sqrt{3}}{4}a^2+6ah=S\sqrt{3}$}; \draw[thin,dashed,blue] (20:2)--(200:2) (140:2)--(320:2) (260:2)--(80:2); \end{tikzpicture}

Obliczając z tego równania długość h otrzymamy

    \[h=\dfrac{\sqrt{3}}{6}\left(\dfrac{S}{a}-3a\right).\]

Wynika stąd w szczególności, że S/a-3a>0, czyli 3a^2<S i stąd a\in\left(0,\,\dfrac{\sqrt{3S}}{3}\right). Objętość V graniastosłupa, jako funkcja zmiennej a wyraża się wzorem

    \[V(a)=6\cdot\frac{\sqrt{3}}{4}a^2\cdot h=\frac{3}{4}\left(Sa-3a^3\right).\]

Mamy znaleźć maksimum funkcji V(a) dla podanego wyżej zakresu zmiennej a. Pochodna wynosi

    \[V'(a)=\frac{3}{4}\left(S-9a^2\right).\]

Wynika stąd, że dla a=\dfrac{\sqrt{S}}{3} pochodna ta zmienia znak z dodatniego na ujemny, więc w punkcie tym funkcja V(a) osiąga maksimum.

Obliczamy

    \[V_{\max}=V\left(\frac{\sqrt{S}}{3}\right)=\frac{S\sqrt{S}}{6}.\]

 

Kombinatoryka i rachunek prawdopodobieństwa – przykłady z rozwiązaniami

Zadanie 1. (0-4)
Oblicz prawdopodobieństwo tego, że w trzech rzutach symetryczną sześcienną kostką do gry suma kwadratów liczb uzyskanych oczek będzie podzielna przez 3.

♦ matura – poziom rozszerzony, maj 2010.


Zauważmy, że kwadraty liczb 1, 2, 4 i 5 dają przy dzieleniu przez 3 reszty 1; natomiast liczby 3^2 i 6^2 dają reszty zerowe przy takim dzieleniu. Aby więc suma trzech takich kwadratów dawała wynik podzielny przez 3 (czyli resztę zero), albo wszystkie trzy liczby muszą same być podzielne przez 3 – czyli pochodzić ze zbioru \{3,6\}, albo wszystkie trzy liczby muszą pochodzić ze zbioru \{1,2,4,5\}.

Jeżeli przez A oznaczymy odpowiednie zdarzenie, to zgodnie z powyższą uwagą, mamy

    \[\bar{\bar{A}}=2^3+4^3.\]

Dodatkowo \Omega przestrzeń wszystkich zdarzeń elementarnych ma elementów

    \[\bar{\bar{\Omega}}=6^3.\]

Zatem mamy odpowiedź: \mathbf{P}(A)=\dfrac{\bar{\bar{A}}}{\bar{\bar{\Omega}}}=\dfrac{2^3+4^3}{6^3}=\dfrac{8+64}{216}=\dfrac{1}{3}.

 

Zadanie 2. (0-3)
Oblicz, ile jest liczb naturalnych sześciocyfrowych, w zapisie których występuje dokładnie trzy razy cyfra 0 i dokładnie raz występuje cyfra 5.

♦ matura – poziom rozszerzony, maj 2013.


Cyfra zero nie może występować na pierwszej pozycji w zapisie danej liczby sześciocyfrowej, pozostałe 5 miejsc jest już dozwolonych. Mamy więc {5\choose 3} możliwości, aby umiejscowić cyfrę zero. Na pozostałych 3 miejscach (tym razem już łącznie z najbardziej znaczącą cyfrą – czyli cyfrą setek tysięcy danej liczby) musi wystąpić cyfra 5. Na to mamy niezależnych {3\choose 1} możliwości. Pozostałe dwa miejsca możemy uzupełnić dowolnymi cyframi różnymi i od piątki i od zera. To daje kolejnych 8\cdot 8 możliwości (jest osiem dostępnych cyfr na dwa pozostałe miejsca). Ostatecznie otrzymujemy odpowiedź: takich liczb jest dokładnie:

    \[{5\choose 3}\cdot {3\choose 1}\cdot 8^2=10\cdot 3\cdot 64=1920.\]

 

Zadanie 3. (0-4)
A i B są zdarzeniami losowymi i \mathbf{P}(B)>0. Wykaż, że

    \[\mathbf{P}(A|B)\leqslant\frac{1-\mathbf{P}(A')}{\mathbf{P}(B)}.\]

♦ matura – poziom rozszerzony, maj 2002.


Z definicji prawdopodobieństwa warunkowego mamy \mathbf{P}(A|B)=\dfrac{\mathbf{P}(A\cap B)}{\mathbf{P}(B)}. Zauważmy, że zdarzenie A\cap B jest zawarte w zdarzeniu A, dlatego \mathbf{P}(A\cap B)\leqslant \mathbf{P}(A). Tym samym możemy napisać

    \[\mathbf{P}(A|B)=\frac{\mathbf{P}(A\cap B)}{\mathbf{P}(B)}\leqslant \frac{\mathbf{P}(A)}{\mathbf{P}(B)}=\frac{1-\mathbf{P}(A')}{\mathbf{P}(B)},\]

z własności prawdopodobieństwa zdarzenia przeciwnego do A. To kończy dowód.

 

Zadanie 4. (0-4)
Rzucamy pięć razy symetryczną kostką sześcienną. Oblicz prawdopodobieństwo zdarzenia, polegającego na tym, że ,,jedynka” wypadnie co najmniej cztery razy.

♦ matura próbna – poziom rozszerzony, styczeń 2003.


Oznaczmy przez A zdarzenie opisane w zadaniu (tj. przy pięciokrotnym rzucie sześcienną kostką do gry, uzyskamy jedno oczko co najmniej cztery razy), zaś przez \Omega tradycyjnie przestrzeń wszystkich możliwych wyników takiego doświadczenia losowego (pięciokrotnego rzutu kostką). Oczywiście wtedy \bar{\bar{\Omega}}=6^5, gdyż musimy uwzględnić każdy możliwy wynik przy jednym rzucie (a tych jest sześć) i ,,zwielokrotnić” go tyle razy ile rzutów wykonujemy (stąd wykładnik 5).

Dla obliczenia liczby \bar{\bar{A}} zauważmy, że A zajdzie gdy albo uzyskamy wyłącznie ,,jedynki” we wszystkich pięciu rzutach, albo w dokładnie jednym z kolejnych rzutów (pierwszym lub drugim itd… lub piątym) ,,jedynka” nie wypadnie. To daje nam równość 

    \[\bar{\bar{A}}=1^5+{5 \choose 1}\cdot 5\cdot 1^4=1+25=26\]

(drugi składnik powyższej sumy zawiera symbol Newtona, odpowiadający za to, w którym z kolei rzucie wypadnie wynik inny niż ,,jedynka”).

Ostatecznie mamy

    \[\mathbf{P}(A)=\frac{\bar{\bar{A}}}{\bar{\bar{\Omega}}}=\frac{26}{6^5}\approx 0,\!0033.\]

 

Zadanie 5. (0-4)
Z pewnej grupy osób, w której jest dwa razy więcej mężczyzn niż kobiet, wybrano losowo dwuosobową delegację. Prawdopodobieństwo tego, że w delegacji znajdą się tylko kobiety jest równe 0,\!1. Oblicz, ile kobiet i ilu mężczyzn jest w tej grupie.

♦ matura – poziom rozszerzony, maj 2008.


Załóżmy, że liczba kobiet w opisanej grupie wynosi k, wtedy mężczyzn jest tam 2k. Wszystkich możliwych wyborów delegacji dwuosobowej jest równa

    \[\bar{\bar{\Omega}}={{k+2k}\choose 2}={3k\choose 2}=\frac{3k(3k-1)}{2}.\]

Delegacji złożonych wyłącznie z kobiet można utworzyć

    \[\bar{\bar{A}}={k \choose 2}=\frac{k(k-1)}{2}.\]

Stąd mamy równość 

    \[\frac{\bar{\bar{A}}}{\bar{\bar{\Omega}}}=\frac{k(k-1)}{3k(3k-1)}=0,\!1.\]

Stąd (k-1)\cdot 10=9k-3, czyli k=7. Mamy więc odpowiedź: w opisanej grupie było 7 kobiet.

 

Zadanie 6. (0-4)
Wśród m losów loterii jest 6 losów wygrywających. Dla jakich m prawdopodobieństwo tego, że zakupione dwa losy będą wygrywające, jest większe od \dfrac{1}{3}?

♦ matura – poziom podstawowy (Częstochowa), maj 1988.


Oczywiście m jest liczbą naturalną i m\geqslant 6. Wszystkich możliwych wyborów dwóch losów spośród m jest dokładnie \bar{\bar{\Omega}}={m\choose 2}. Możliwości, w których zakupione oba losy są zwycięskie mamy zaś \bar{\bar{A}}={6\choose 2}. Stąd dostajemy nierówność

    \[\frac{\bar{\bar{A}}}{\bar{\bar{\Omega}}}=\frac{6\cdot 5}{m\cdot (m-1)}>\frac{1}{3}.\]

To prowadzi do nierówności m(m-1)<90, czyli m^2-m-90<0. Obliczamy wyróżnik \Delta=1+360 i stąd m_1=\dfrac{1-19}{2}=-9 oraz m_2=\dfrac{1+19}{2}=10, czyli m\in(-9,10). Uwzględniając założenia – otrzymujemy końcowe rozwiązanie: m\in\{6,7,8,9\}.

 

Zadanie 7. (0-4)
W urnie umieszczono 4 kule białe i 8 kul czarnych. Losujemy jedną kulę. Jeżeli będzie biała, to wrzucamy ją z powrotem do urny i dorzucamy do niej jeszcze dwie białe kule. Jeżeli będzie czarna, to zatrzymujemy ją i dorzucamy dwie zielone kule do urny. Następnie losujemy z urny jednocześnie dwie kule. Oblicz prawdopodobieństwo zdarzenia, że obie z wylosowanych za drugim razem kul są białe.

♦ matura próbna ,,Operon” – poziom rozszerzony, listopad 2019.


Sytuację po pierwszym losowaniu wygodnie jest przedstawić za pomocą grafu.

\begin{tikzpicture}[node distance={35mm}, thick,main/.style = {draw, circle},mm/.style = {draw, rectangle}]  \node[mm] (1) {START: $4b+8cz$};  \node[mm] (2) [below left of=1] {$6b+8cz$};  \node[mm] (3) [below right of=1] {$4b+7cz+2z$};  \draw[->] (1) -- node[midway,below, sloped, pos=0.5] {bia{\l}a} (2); \draw[->] (1) -- node[midway,above, sloped, pos=0.5] {$p=\frac{4}{12}$} (2); \draw[->] (1) -- node[midway,below, sloped, pos=0.5] {czarna} (3); \draw[->] (1) -- node[midway,above, sloped, pos=0.5] {$p=\frac{8}{12}$} (3); \end{tikzpicture}

Węzły drzewka zawierają opis zawartości urny w obu przypadkach. Wylosowanie za drugim razem dwóch kul białych wystąpi z prawdopodobieństwem

    \[\frac{4}{12}\cdot\frac{\binom{6}{2}}{\binom{14}{2}}+\frac{8}{12}\cdot\frac{\binom{4}{2}}{\binom{13}{2}}=\frac{1}{3}\cdot\frac{15}{91}+\frac{2}{3}\cdot\frac{6}{78}=\frac{29}{273}.\]

 

Geometria i zadania na dowodzenie – przykłady z rozwiązaniami

Zadanie 1. (0-4)
Na bokach BC i CD równoległoboku ABCD zbudowano kwadraty CDEF i BCGH (zobacz rysunek). Udowodnij, że |AC| = |FG|.

\begin{tikzpicture}[scale=1] \coordinate[label=below left:$A$] (A) at (0,0); \coordinate[label=below:$B$] (B) at (3,0); \coordinate[label=above right:$C$] (C) at (4,2); \coordinate[label=left:$D$] (D) at (1,2); \coordinate[label=above left:$E$] (E) at (1,5); \coordinate[label=above right:$F$] (F) at (4,5); \coordinate[label=right:$G$] (G) at (6,1); \coordinate[label=right:$H$] (H) at (5,-1); \draw[thick] (A)--(B)--(C)--(D)--cycle; \draw[thick,blue] (D)--(C)--(F)--(E)--cycle; \draw[thick,red] (B)--(H)--(G)--(C)--cycle; \end{tikzpicture}

♦ matura – poziom rozszerzony, maj 2010.


Zaznaczmy na rysunku interesujące nas odcinki i rozważmy taki dodatkowy punkt X, aby czworokąt CFXG był równoległobokiem.

\begin{tikzpicture}[scale=1] \coordinate[label=below left:$A$] (A) at (0,0); \coordinate[label=below:$B$] (B) at (3,0); \coordinate[label=above right:$C$] (C) at (4,2); \coordinate[label=left:$D$] (D) at (1,2); \coordinate[label=above left:$E$] (E) at (1,5); \coordinate[label=above right:$F$] (F) at (4,5); \coordinate[label=right:$G$] (G) at (6,1); \coordinate[label=right:$H$] (H) at (5,-1); \coordinate[label=right:$X$] (X) at (6,4); \draw[thick] (A)--(B)--(C)--(D)--cycle; \draw[thick] (D)--(C)--(F)--(E)--cycle; \draw[thick] (B)--(H)--(G)--(C)--cycle; \draw[very thick,red] (A)--(C) (F)--(G); \draw[blue] (C)--(F)--(X)--(G)--cycle; \end{tikzpicture}

Wtedy ten nowy równoległobok jest przystający do wyjściowego równoległoboku ABCD. Odpowiednie przekątne też są jednakowe, a ponieważ \angle BCD+\angle FCG=180^\circ, to przekątne FG i AC są właśnie jednakowej długości. To kończy dowód.

 

Zadanie 2. (0-4)
Trapez równoramienny ABCD o podstawach AB i CD jest opisany na okręgu o promieniu r. Wykaż, że 4r^2=|AB|\cdot |CD|.

♦ matura – poziom rozszerzony, maj 2013.


Wykonajmy stosowny rysunek. Zauważmy przy tym, że szkic wykorzystuje dodatkowe założenie, że |AB|\geqslant |CD|. Należy mieć tego świadomość i w rozwiązaniu odpowiednio się do tego odnieść.

\begin{tikzpicture}[scale=1] \draw (0,0) circle (2cm); \draw[thick] (-4,-2)--(4,-2)--(1,2)--(-1,2)--cycle; \node[below left] at (-4,-2) {$A$}; \node[below right] at (4,-2) {$B$}; \node[above] at (1,2) {$C$}; \node[above] at (-1,2) {$D$}; \draw[blue] (1,2)--(1,-2) node[left,midway] {$2r$};  \node[below] at (1,-2) {$E$}; \draw (1,-2)--(4,-2) node[below,midway,scale=0.8] {$\frac{|AB|-|CD|}{2}$}; \end{tikzpicture}

Z warunku opisywalności czworokąta na okręgu wiemy, że suma jego podstaw jest równa sumie długości ramion, czyli

    \[|AB|+|CD|=2|BC|,\]

bo trapez jest równoramienny. Stąd |BC|=\dfrac{|AB|+|CD|}{2}. Wykorzystajmy teraz twierdzenie pitagorasa dla trójkąta BCE, gdzie punkt E jest podstawą wysokości trapezu poprawodznej z wierzchołka C. Wtedy, znów korzystając z równych długości ramion i symetrii całej figury, mamy |BE|=\dfrac{|AB|-|CD|}{2}. Uwaga. Gdyby przyjąć, że to podstawa |CD| jest dłuższa od podstawy |AB|, to odpowiedni odcinek miałby długość \dfrac{|CD|-|AB|}{2}, jednak nie wpływa to na dalsze obliczenia (gdyż kwadrat obu wyrażeń jest taki sam).

Z twierdzenia Pitagorasa mamy teraz |BC|^2=(2r)^2+\left(\frac{|AB|-|CD|}{2}\right)^2, czyli

    \[4r^2=\left(\frac{|AB|+|CD|}{2}\right)^2-\left(\frac{|AB|-|CD|}{2}\right)^2=|AB|\cdot |CD|,\]

co mieliśmy pokazać.

 

Zadanie 3. (0-4)
Trapez równoramienny, o obwodzie równym 20 cm, jest opisany na okręgu. Wiedząc, że przekątna trapezu ma długość \sqrt{41} cm, oblicz pole tego trapezu.

♦ matura próbna – poziom rozszerzony, maj 2003.


Przyjmijmy oznaczenia jak na rysunku; zakładamy (bez zmniejszenia ogólności rozważań), że a\geqslant b. Rachunki będziemy przeprowadzać w centymetrach, co uwzględnimy formułując końcową odpowiedź.

\begin{tikzpicture}[scale=1] \draw (0,0) circle (2cm); \draw[thick] (-4,-2)--(4,-2)--(1,2)--(-1,2)--cycle; \node[below left] at (-4,-2) {$A$}; \node[below right] at (4,-2) {$B$}; \node[above] at (1,2) {$C$}; \node[above] at (-1,2) {$D$}; \draw[blue,thick] (1,-2)--(1,2)--(-4,-2);  \node[below] at (1,-2) {$E$}; \node[below] at (0,-2) {$a$}; \node[above] at (0,2) {$b$}; \node[right,blue] at (1,0) {$h$}; \draw[blue] (-4,-2)--(1,2) node[above,midway,sloped] {$\sqrt{41}$}; \draw (1,-2)--(4,-2) node[below,midway,scale=0.8] {$\frac{a-b}{2}$}; \end{tikzpicture}

Z warunku opisywalności czworokąta na okręgu i z tego, że trapez jest równoramienny wynika, że suma długości przeciwległych boków jest równa połowie obwodu: a+b=2|BC|=10. Stąd |BC|=5 oraz a+b=5.

Napiszmy twierdzenie Pitagorasa dla trójkątów ACE i BCE. Mamy

    \[h^2+|AE|^2=41\quad\text{oraz}\quad h^2+|BE|^2=25.\]

Wiemy też, że |AE|=\dfrac{a+b}{2} i |BE|=\dfrac{a-b}{2}. Podstawiając to do wcześniejszych równości i odejmując je stronami, uzyskamy

    \[16=|AE|^2-|BE|^2=(|AE|-|BE|)(|AE|+|BE|)=ab.\]

Mamy więc a+b=10 i ab=16. Rozwiązując ten układ równań dostaniemy b=10-a i dalej a(10-a)=16, czyli a^2-10a+16=0, a stąd (a-8)(a-2)=0. To prowadzi nas do możliwych rozwiązań (a,b)=(2,8) lub (a,b)=(8,2), jednak a\geqslant b, czyli a=8 i b=2.

Wówczas |AE|=5 i stąd h^2+5^2=41, czyli h^2=16, więc h=4. To już prowadzi do odpowiedzi: szukane pole trapezu wynosi P=\dfrac{a+b}{2}\cdot h=5\cdot 4=20 cm^{2}.

 

Zadanie 4. (0-3)
Dany jest trójkąt prostokątny o przyprostokątnych długości a i b, w którym kąt między środkową a wysokością wychodzącymi z wierzchołka kąta prostego ma miarę \alpha. Wykaż, że \text{tg}\alpha=\dfrac{|a^2-b^2|}{2ab}.

♦ matura próbna ,,Operon” – poziom rozszerzony, listopad 2019.


Rozważmy trójkąt prostokątny ABC, w którym punkt M jest środkiem przeciwprostokątnej AB, zaś H jest spodkiem wysokości opuszczonej z wierzchołka C.

\begin{tikzpicture}[scale=1.7] \coordinate[label=below left:$A$] (A) at (180:2); \coordinate[label=below right:$B$] (B) at (0:2); \coordinate[label=above:$C$] (C) at (50:2); \coordinate[label=below:$H$] (H) at ($(A)!(C)!(B)$); \coordinate[label=below:$M$] (M) at (0,0); \draw[thick] (A)--(B)--(C)--cycle; \draw[blue,thick] (H)--(C)--(M); \node[scale=1.1,blue] at ($(C)+(250:0.4)$)  {$\alpha$}; \draw (A)--(C) node[above,midway] {$b$}; \draw (B)--(C) node[right,midway] {$a$}; \draw[blue] (C)--(H) node[right,midway] {$h$}; \end{tikzpicture}

Oznaczmy |CH|=h, |AB|=c, |BC|=a oraz |CA|=b. Zauważmy, że porównując pole trójkąta ABC mamy zależność \dfrac{ab}{2}=\dfrac{ch}{2}, czyli h=\dfrac{ab}{c}. Dodatkowo |MC|=|MB|=\dfrac{c}{2}. Stąd

    \[\cos\alpha=\frac{h}{|MC|}=\frac{h}{c/2}=\frac{2ab}{c^2}=\frac{2ab}{a^2+b^2}.\]

Ponieważ \text{tg}\alpha=\dfrac{\sin\alpha}{\cos\alpha}, to mamy

(1)   \begin{eqnarray*} \text{tg}\alpha &=&\frac{\sqrt{1-\cos^2\alpha}}{\cos\alpha}=\frac{\sqrt{1-\frac{4a^2b^2}{(a^2+b^2)^2}}}{\frac{2ab}{a^2+b^2}}=\nonumber\\ &=&\frac{\sqrt{(a^2+b^2)^2-4a^2b^2}}{2ab}=\frac{\sqrt{(a^2-b^2)^2}}{2ab}=\frac{|a^2-b^2|}{2ab}.\nonumber \end{eqnarray*}

To kończy dowód.

 

Zadanie 5. (0-2)
W trójkącie ostrokątnym ABC wiadomo,że \sin\angle BAC=\dfrac{4}{5}, a \sin\angle ABC=\dfrac{2\sqrt{2}}{3}. Oblicz \cos\angle ACB.

♦ matura próbna ,,Nowa Era” – poziom rozszerzony, styczeń 2018.


Oznaczmy odpowiednie kąty trójkąta przez \alpha, \beta i \gamma. Ponieważ trójkąt jest ostrokątny, więc wartości wszystkich funkcji trygonometrycznych wskazanych kątów są wszystkie dodatnie. Stąd, jeżeli \sin\alpha=\dfrac{4}{5}, to \cos\alpha=\sqrt{1-\dfrac{4^2}{5^2}}=\dfrac{3}{5}. Podobnie, skoro \sin\beta=\dfrac{2\sqrt{2}}{3}, to \cos\beta=\sqrt{1-\dfrac{8}{9}}=\dfrac{1}{3}.

\begin{tikzpicture} \coordinate[label=below left:$A$] (A) at (200:2); \coordinate[label=below right:$B$] (B) at (340:2); \coordinate[label=above:$C$] (C) at (100:2); \draw[thick] (A)--(B)--(C)--cycle; \draw[thin,blue,shift={(A)}] (0:0.7) arc (0:60:0.7) node at (30:0.44) {$\alpha$}; \draw[thin,blue,shift={(B)}] (130:0.7) arc (130:180:0.7) node at (155:0.5) {$\beta$}; \draw[thin,blue,shift={(C)}] (240:0.7) arc (240:310:0.7) node at (275:0.5) {$\gamma$}; \end{tikzpicture}

Mamy oczywiście \gamma=180^\circ-(\alpha+\beta), czyli

    \[\cos\gamma=-\cos(\alpha+\beta)=\sin\alpha\cdot\sin\beta-\cos\alpha\cdot\cos\beta.\]

Podstawiając wyliczone wartości, otrzymujemy \cos\gamma=\dfrac{4}{5}\cdot\dfrac{2\sqrt{2}}{3}-\dfrac{3}{5}\cdot\dfrac{1}{3}=\dfrac{8\sqrt{2}-3}{15}.

 

Zadanie 6. (0-3)
W czworokącie ABCD dane są: |AC|=5, \angle BAD=\angle BCD=90^\circ, \sin\angle ABC=\dfrac{\sqrt{5}}{3}. Oblicz długość przekątnej BD tego czworokąta.

♦ matura próbna ,,Nowa Era” – poziom rozszerzony, styczeń 2018.


Dany czworokąt można wpisać okrąg (bo suma jego przeciwległych kątów wynosi 180^\circ), przy czym przekątna BD jest średnicą tego okręgu.

\begin{tikzpicture} \coordinate[label=below left:$A$] (A) at (200:2); \coordinate[label=below right:$B$] (B) at (340:2); \coordinate[label=above:$C$] (C) at (100:2); \coordinate[label=above left:$D$] (D) at (160:2); \draw[thick,blue] (A)--(C); \draw[red,thick] (B)--(D); \draw[thin,dashed] (0,0) circle (2cm); \draw[thick] (A)--(B)--(C)--(D)--cycle; \draw[thin,blue,shift={(B)}] (130:0.7) arc (130:180:0.7) node at (155:0.5) {$\beta$}; \end{tikzpicture}

Okrąg ten jest jednocześnie okręgiem opisanym na trójkącie ABC, więc jego promień R, z twierdzenia sinusów, spełnia równość

    \[R=\dfrac{|AC|}{\sin\beta}=\dfrac{5}{\frac{\sqrt{5}}{3}}=3\sqrt{5}.\]

Stąd odpowiedź: |BD|=2R=6\sqrt{5}.

 

Geometria analityczna – przykłady z rozwiązaniami

Zadanie 1. (0-6)
Punkt A=(-2,5) jest jednym z wierzchołków trójkąta równoramiennego ABC, w którym |AC|=|BC|. Pole tego trójkąta jest równe 15. Bok BC jest zawarty w prostej o równaniu y=x+1. Oblicz współrzędne wierzchołka C.

♦ matura – poziom rozszerzony, maj 2010.


Jak niemal każde zadanie z geometrii najlepiej rozpocząć od wykonania w miarę dokładnego rysunku.

\begin{tikzpicture}[scale=0.6] \draw[black!30] (-9.5,-7.5) grid (8.5,9.5); \draw[ultra thick,->] (-9.5,0)--(8.5,0) node[below] {$x$}; \draw[very thick,->] (0,-7.5)--(0,9.5) node[left] {$y$}; \coordinate[label=above:$A$] (A) at (-2,5); \coordinate[label=below right:$C$] (C) at (-3,-2); \coordinate[label=below right:$B_1$] (B1) at (2,3); \coordinate[label=below right:$B_2$] (B2) at (-8,-7); \draw[blue] (-9,-8)--(8.5,9.5) node[below,sloped,near end] {$y=x+1$}; \draw[fill=black] (A) circle (0.09cm); \draw[fill=black] (C) circle (0.09cm); \draw[fill=black] (B1) circle (0.09cm); \draw[fill=black] (B2) circle (0.09cm); \draw[red,thick] (A)--(B1)--(C)--cycle; \draw[green!50!black,thick] (A)--(B2)--(C)--cycle; \end{tikzpicture}

Ponieważ punkty B i C leżą na prostej y=x+1, to możemy przyjąć, że B=(b,b+1) i C=(c,c+1) dla pewnych liczb b oraz c. Możemy obliczyć długość odcinka BC korzystając z informacji o polu naszego trójkąta. Istotnie, traktując bok BC jako podstawę, wysokość będzie odległością punktu A od danej prostej x-y+1=0. Ma ona wartość

    \[h=\frac{|-2-5+1|}{\sqrt{1^2+(-1)^2}}=\frac{6}{\sqrt{2}}=3\sqrt{2}.\]

Stąd \dfrac{1}{2}\cdot h\cdot |BC|=15, czyli |BC|=\dfrac{30}{3\sqrt{2}}=5\sqrt{2}.

Możemy teraz napisać

    \[25\cdot 2=|BC|^2=(b-c)^2+(b+1-c-1)^2=2(b-c)^2,\]

a stąd (b-c)^2=25. To daje nam dwie możliwości: b=5+c albo b=-5+c.

Pozostaje jeszcze sprawdzić, kiedy otrzymamy trójkąt równoramienny z równością |AC|=|BC|=5\sqrt{2}. Mamy

    \[|AC|=\sqrt{(c+2)^2+(c+1-5)^2}=\sqrt{2c^2-4c+20},\]

stąd 2c^2-4c+20=50 lub w wersji uproszczonej c^2-2c-15=0. Rozwiązując to równanie kwadratowe uzyskamy możliwe wartości c. \Delta=4-4\cdot 1\cdot (-15)=64, c_1=\dfrac{2-8}{2}=-3 lub c_2=\dfrac{2+8}{2}=5. Mamy więc C=(-3,-2) lub C=(5,6). Wtedy, zgodnie z wcześniejszymi obliczeniami B=(2,3) lub B=(-8,-7) albo odpowiednio B=(10,11) lub B=(0,1). Są zatem cztery trójkąty ABC, które spełniają warunki zadania ale tylko dwa możliwe położenia wierzchołka C.

 

Zadanie 2. (0-5)
Rysunek przedstawia fragment wykresu funkcji f(x)=\dfrac{1}{x^2}. Przeprowadzono prostą równoległą do osi Ox, która przecięła wykres tej funkcji w punktach A i B. Niech C=(3,-1). Wykaż, że pole trójkąta ABC jest większe lub równe 2.

\begin{tikzpicture}[scale=1.2] \draw[black!30] (-3.5,-1.5) grid (4.8,3.8); \draw[ultra thick,->] (-3.5,0)--(5,0) node[below] {$x$}; \draw[very thick,->] (0,-1.5)--(0,4) node[left] {$y$}; \foreach \x in {-3,-2,-1,1,2,3,4}   \draw (\x,0)--(\x,-0.05) node[below] {\bf \x };  \foreach \y in {-1,1,2,3}   \draw (0,\y)--(-0.05,\y) node[left] {\bf \y };  \draw[domain=-3.2:-0.5, smooth,thick, variable=\x] plot ({\x}, {1/(\x*\x)}); \draw[domain=0.5:4, smooth,thick, variable=\x] plot ({\x}, {1/(\x*\x)}); \end{tikzpicture}

♦ matura – poziom rozszerzony, maj 2010.


Zaznaczmy punkt C i poprowadźmy przykładową prostą o równaniu y=a (równoległą od osi Ox). Aby pojawiły się punkty przecięcia z podanym wykresem, musi być a>0. Wtedy współrzędne punktów A i B obliczymy rozwiązując równanie \dfrac{1}{x^2}=a, czyli x^2=\dfrac{1}{a}. Możemy więc przyjąć, że

    \[A=\left(-\sqrt{\frac{1}{a}},\,a\right),\quad B=\left(\sqrt{\frac{1}{a}},\,a\right).\]

\begin{tikzpicture}[scale=1.2] \draw[black!40] (-3.5,-1.5) grid (4.8,3.8); \draw[ultra thick,->] (-3.5,0)--(5,0) node[below] {$x$}; \draw[very thick,->] (0,-1.5)--(0,4) node[left] {$y$}; \foreach \x in {-3,-2,-1,1,2,3,4}   \draw (\x,0)--(\x,-0.05) node[below] {\bf \x };  \foreach \y in {-1,1,2,3}   \draw (0,\y)--(-0.05,\y) node[left] {\bf \y };  \coordinate[label=below right:$C$] (C) at (3,-1); \draw[domain=-3.2:-0.5, smooth,thick, variable=\x] plot ({\x}, {1/(\x*\x)}); \draw[domain=0.5:4, smooth,thick, variable=\x] plot ({\x}, {1/(\x*\x)}); \draw[fill=black] (C) circle (0.07cm); \draw[blue] (-2.5,1.778)--(2.5,1.778) node[above] {$y=a$}; \coordinate[label=above right:$B$] (B) at (0.75,1.778); \draw[fill=blue] (B) circle (0.07cm); \coordinate[label=above left:$A$] (A) at (-0.75,1.778); \draw[fill=blue] (A) circle (0.07cm); \draw[red,thick] (A)--(B)--(C)--cycle; \end{tikzpicture}

Obliczmy teraz pole P trójkąta ABC traktując AB jako podstawę. Oczywiście |AB|=2\sqrt{\frac{1}{a}}, zaś odpowiednia wysokość w tym trójkącie jest odległością wierzchołka C od poprowadzonej prostej, wynosi więc h=a+1. Zatem

    \[P=\frac{1}{2}\cdot |AB|\cdot h=\frac{1}{2}\cdot 2\sqrt{\frac{1}{a}}\cdot(a+1)=\sqrt{a}+\frac{1}{\sqrt{a}}.\]

Aby pokazać, że otrzymana wartość jest zawsze większą lub równa 2, dla dowolnego a>0, wystarczy zauważyć, że biorąc t=\sqrt{a} mamy

    \[P=t+\frac{1}{t}=\left(\sqrt{t}-\frac{1}{\sqrt{t}}\right)^2+2\geqslant 2.\]

To kończy rozwiązanie.

 

Zadanie 3. (0-6)
Zaznacz na płaszczyźnie zbiór

    \[F=\left\{(x,y)\colon x\in\mathbf{R}\wedge y\in\mathbf{R}\wedge \log_{\frac{1}{2}}\left(|x|-1\right)\geqslant -2\wedge |y|>0\right\}.\]

Napisz równania osi symetrii figury F.

♦ matura – poziom rozszerzony, maj 2002.


Zaczniemy oczywiście od dziedziny. Musi być |x|-1>0, czyli x\in(-\infty,\,-1)\cup(1,\,\infty). Nierówność |y|>0 oznacza, że y\neq 0, zatem figura F nie zawiera żadnego punktu z osi Ox. Zajmijmy się teraz nierównością z logarytmem. Mamy

    \[\log_{\frac{1}{2}}\left(|x|-1\right)\geqslant -2=\log_{\frac{1}{2}} 4,\]

bo \left(\dfrac{1}{2}\right)^{-2}=4.

Opuszczamy logarytmy (pamiętając o zmianie znaku nierówności, bo podstawa logarytmu jest mniejsza od 1) i otrzymujemy |x|-1\leqslant 4, czyli |x|\leqslant 5, zatem x\in[-5,\,5]. Uwzględniając dziedzinę mamy

    \[F=\{(x,y)\colon x\in\mathbf{R}\wedge y\in\mathbf{R}\wedge x\in[-5,-1)\cup (1,5]\wedge y\neq 0\}.\]

Poniżej rysunek tej (nieograniczonej) figury.

\begin{tikzpicture}[scale=0.75] \draw[blue!15,fill=blue!15] (-5,3.4) rectangle (-1,-3.4); \draw[blue!15,fill=blue!15] (5,-3.4) rectangle (1,3.4); \draw[red,ultra thick] (-5,-3.4)--(-5,3.4) (5,-3.4)--(5,3.4); \draw[red,ultra thick,dashed] (-1,-3.4)--(-1,3.4) (1,-3.4)--(1,3.4); \draw[black!40] (-6.5,-3.5) grid (6.5,3.5); \draw[thick,->] (-6.5,0)--(6.5,0) node[below] {$x$}; \draw[thick,->] (0,-3.5)--(0,3.5) node[left] {$y$}; \foreach \x in {-6,-5,-4,-3,-2,-1,1,2,3,4,5,6}   \draw (\x,0)--(\x,-0.05) node[below] { \x };  \foreach \y in {-3,-2,-1,1,2,3}   \draw (0,\y)--(-0.05,\y) node[left] {\y };  \draw[dashed,ultra thick,red!80] (-5,0)--(-1,0) (1,0)--(5,0); \draw[fill=white] (-5,0) circle (3pt); \draw[fill=white] (5,0) circle (3pt); \end{tikzpicture}

Jedynymi osiami symetrii są oczywiście osie układu współrzędnych, czyli proste o równaniach y=0 oraz x=0. Nie ma innych, choćby ze względu na punkty (-5,0) oraz (5,0), które jako jedyne punkty z prostych pionowych x=\pm 5 nie należą do figury F.

 

Zadanie 4. (0-4)
W układzie współrzędnych są dane punkty: A=(-9,-2) oraz B=(4,2). Wyznacz współrzędne punktu C, leżącego na osi Oy, tak że kąt ACB jest kątem prostym.

♦ matura próbna – poziom rozszerzony, styczeń 2003.


Wykonajmy rysunek. Rozwiązanie najłatwiej oprzeć na spostrzeżeniu, że dla znalezionego punktu C trójkąt ABC będzie prostokątny z przeciwprostokątną AB. Wtedy jednak bok AB będzie średnicą dla okręgu opisanego na tym trójkącie. To sugeruje jak znaleźć wierzchołek C: jest to punkt wspólny osi Oy i okręgu, dla którego odcinek AB jest średnicą.

\begin{tikzpicture}[scale=0.3] \draw[black!30] (-10.5,-8.5) grid (5.5,9.5); \coordinate[label=below left:$A$] (A) at (-9,-2); \coordinate (O) at (-2.5,0); \coordinate[label=above right:$B$] (B) at (4,2); \coordinate[label=above right:$C_1$] (C1) at (0,6.3); \coordinate[label=below right:$C_2$] (C2) at (0,-6.3); \draw[blue] (-2.5,0) circle (6.8) (A)--(B); \draw[thick,->] (-10.5,0)--(5.5,0) node[below] {$x$}; \draw[thick,->] (0,-8.5)--(0,9.5) node[left] {$y$}; \draw[red] (A)--(C1)--(B) (A)--(C2)--(B); \foreach \p in {A,B,C1,C2,O}   \draw[fill=black] (\p) circle (4.5pt); \end{tikzpicture}

Ponieważ |AB|=\sqrt{(4-(-9))^2+(2-(-2))^2}=\sqrt{185}, zaś środkiem odcinka AB jest punkt O=\left(\frac{4+(-9)}{2},\,\frac{2+(-2)}{2}\right)=\left(-\frac{5}{2},\,0\right), to równanie odpowiedniego okręgu ma postać

    \[\left(x+\frac{5}{2}\right)^2+(y-0)^2=\left(\frac{\sqrt{185}}{2}\right)^2=\frac{185}{4}.\]

My oczywiście szukamy takiego punktu C tego okręgu, dla którego współrzędna odcięta wynosi zero, stąd

    \[y^2=\dfrac{185}{4}-\frac{25}{4},\]

czyli y^2=40 i y=-\sqrt{40} lub y=\sqrt{40}. Stąd odpowiedź: są dwa rozwiązania: C_1=(0,\,\sqrt{40}) lub C_2=(0,\,-\sqrt{40}).

 

Zadanie 5. (0-4)
Wyznacz równanie okręgu opisanego na trójkącie, którego boki zawierają się w prostych o równaniach x+6y-12=0, x+y-7=0 oraz x-4y+18=0.

♦ matura próbna ,,Operon” – poziom rozszerzony, listopad 2019.


Sytuację przedstawia rysunek. Najpierw należy wyznaczyć wierzchołki trójkąta o bokach leżących na podanych prostych. W tym celu tworzymy trzy układy równań z podanych równań prostych i rozwiązujemy je.

\begin{tikzpicture}[scale=1] \draw[black!40] (-7.4,-2.5) grid (7.8,6.8); \draw[ultra thick,->] (-7.5,0)--(8,0) node[below] {$x$}; \draw[ultra thick,->] (0,-2.5)--(0,7) node[left] {$y$}; \foreach \x in {-7,-6,-5,-4,-3,-2,-1,1,2,3,4,5,6,7,}   \draw (\x,0)--(\x,-0.05) node[below] {\bf \x };  \foreach \y in {-1,1,2,3,4,5,6}   \draw (0,\y)--(-0.05,\y) node[left] {\bf \y };  \draw[domain=0.7:3.2, smooth,thick, blue,variable=\y] plot ({12-6*\y}, {\y}); \draw[domain=-0.9:6, smooth,blue,thick,variable=\y] plot ({7-\y}, {\y}); \draw[domain=2.7:6, smooth,thick, blue,variable=\y] plot ({4*\y-18}, {\y}); \coordinate[label=above:$A$] (A) at (2,5); \coordinate[label=above right:$B$] (B) at (6,1); \coordinate[label=below:$C$] (C) at (-6,3); \coordinate[label=left:$S$] (S) at (-0.6,-1.6); \coordinate[label=left:$M_1$] (M1) at (4,3); \coordinate[label=above left:$M_2$] (M2) at (-2,4); \draw[shift={(-0.6,-1.6)},red,thick] (0:7.09) arc (0:170:7.09); \foreach \w in {A,B,C,S,M1,M2}   \draw[fill=black] (\w) circle (1.7pt); \draw[domain=-1.5:6, smooth,thick,dashed,variable=\x] plot ({\x},{\x-1}); \draw[domain=-2.8:-0.2, smooth,thick,dashed,variable=\x] plot ({\x},{-4*\x-4}); \end{tikzpicture}

Oznaczając przez A,B,C wierzchołki trójkąta, ich współrzędne spełniają więc kolejno zależności

    \[\left\{\begin{array}{l}x+y-7=0\\x-4y+18=0\end{array}\right.\quad \left\{\begin{array}{l}x+y-7=0\\x+6y-12=0\end{array}\right.\quad \left\{\begin{array}{l}x-4y+18=0\\x+6y-12=0\end{array}\right..\]

Stąd A=(2,5), B=(6,1) i C=(-6,3).

Środek okręgu opisanego na trójkącie znajduje się w punkcie przecięcia symetralnych jego boków. Niech M_1 oznacza środek boku AB, zaś M_2 będzie środkiem boku AC. Wtedy oczywiście M_1=\left(\dfrac{2+6}{2},\,\dfrac{5+1}{2}\right)=(4,3) i podobnie M_2=(-2,4). Teraz znależy znaleźć równania prostych prostopadłych do odpowiednich boków i przechodzących przez wyznaczone punkty M_1 i M_2. Symetralna boku AB przechodzi przez M_1 i jej współczynnikiem kierunkowym jest liczba 1, czyli ma ona równanie y=x-1. Zaś symetralna boku AC przechodzi przez M_2 i ma współczynnik kierunkowy równy -4, ma więc postać y=-4x-4.

Środek S szukanego okręgu ma współrzędne spełniające układ równań

    \[S:\left\{\begin{array}{l}y=x-1\\y=-4x-4\end{array}\right.\quad\Rightarrow\quad S=\left(-\frac{3}{5},\,-\frac{8}{5}\right).\]

Pozostaje jeszcze obliczenie promienia r okręgu. W tym celu wyznaczamy długość odcinka |AS|. Mamy

    \[r=|AS|=\sqrt{(2+\frac{3}{5})^2+(5+\frac{8}{5})^2}=\sqrt{\frac{13^2+33^2}{25}}=\frac{\sqrt{1258}}{5}.\]

Ostatecznie, równanie okręgu opisanego na trójkącie ABC ma postać

    \[\left(x+\frac{3}{5}\right)^2+\left(y+\frac{8}{5}\right)^2=\frac{1258}{25}.\]